Numerical Comparison of Prediction Models for Aerosol Filtration Efficiency Applied on a Hollow-Fiber Membrane Pore Structure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29921781
PubMed Central
PMC6027286
DOI
10.3390/nano8060447
PII: nano8060447
Knihovny.cz E-zdroje
- Klíčová slova
- aerosol, diffusion, filtration efficiency, hollow-fiber membrane, inertial impaction, interception,
- Publikační typ
- časopisecké články MeSH
Hollow-fiber membranes (HFMs) have been widely applied to many liquid treatment applications such as wastewater treatment, membrane contactors/bioreactors and membrane distillation. Despite the fact that HFMs are widely used for gas separation from gas mixtures, their use for mechanical filtration of aerosols is very scarce. In this work, we compared mathematical models developed for the prediction of air filtration efficiency by applying them on the structural parameters of polypropylene HFMs. These membranes are characteristic of pore diameters of about 90 nm and have high solidity, thus providing high potential for nanoparticle removal from air. A single fiber/collector and capillary pore approach was chosen to compare between models developed for fibrous filters and capillary-pore membranes (Nuclepore filters) based on three main mechanisms occurring in aerosol filtration (inertial impaction, interception and diffusion). The collection efficiency due to individual mechanisms differs significantly. The differences are caused by the parameters for which the individual models were developed, i.e., given values of governing dimensionless numbers (Reynolds, Stokes and Peclet number) and also given values of filter porosity and filter fiber diameter. Some models can be used to predict the efficiency of HFMs based on assumptions depending on the conditions and exact membrane parameters.
Zobrazit více v PubMed
Givehchi R., Tan Z. An Overview of Airborne Nanoparticle Filtration and Thermal Rebound Theory. Aerosol Air Qual. Res. 2014;14:45–63. doi: 10.4209/aaqr.2013.07.0239. DOI
Givehchi R., Tan Z. The effect of capillary force on airborne nanoparticle filtration. J. Aerosol Sci. 2015;83:12–24. doi: 10.1016/j.jaerosci.2015.02.001. DOI
Darçın M. Association between air quality and quality of life. Environ. Sci. Pollut. Res. 2014;21:1954–1959. doi: 10.1007/s11356-013-2101-3. PubMed DOI
Luo C., Zhu X., Yao C., Hou L., Zhang J., Cao J., Wang A. Short-term exposure to particulate air pollution and risk of myocardial infarction: a systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2015;22:14651–14662. doi: 10.1007/s11356-015-5188-x. PubMed DOI
Landlová L., Čupr P., Franců J., Klánová J., Lammel G. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere. Environ. Sci. Pollut. Res. 2014;21:6188–6204. doi: 10.1007/s11356-014-2571-y. PubMed DOI
Bulejko P., Adamec V., Schüllerová B., Skeřil R. Levels, sources, and health risk assessment of polycyclic aromatic hydrocarbons in Brno, Czech Republic: A 5-year study. Environ. Sci. Pollut. Res. 2016;23:20462–20473. doi: 10.1007/s11356-016-7172-5. PubMed DOI
Jung K.H., Yan B., Chillrud S.N., Perera F.P., Whyatt R., Camann D., Kinney P.L., Miller R.L. Assessment of Benzo(a)pyrene-equivalent Carcinogenicity and Mutagenicity of Residential Indoor versus Outdoor Polycyclic Aromatic Hydrocarbons Exposing Young Children in New York City. Int. J. Environ. Res. Public Health. 2010;7:1889–1900. doi: 10.3390/ijerph7051889. PubMed DOI PMC
Murr L.E., Soto K.F., Garza K.M., Guerrero P.A., Martinez F., Esquivel E.V., Ramirez D.A., Shi Y., Bang J.J., Venzor J., 3rd Combustion-Generated Nanoparticulates in the El Paso, TX, USA/Juarez, Mexico Metroplex: Their Comparative Characterization and Potential for Adverse Health Effects. Int. J. Environ. Res. Public Health. 2006;3:48–66. doi: 10.3390/ijerph2006030007. PubMed DOI PMC
Pini M., Cedillo González E.I., Neri P., Siligardi C., Ferrari A.M. Assessment of Environmental Performance of TiO2 Nanoparticles Coated Self-Cleaning Float Glass. Coatings. 2017;7:8. doi: 10.3390/coatings7010008. DOI
Kumar P., Fennell P., Robins A. Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities. J. Nanopart. Res. 2010;12:1523–1530. doi: 10.1007/s11051-010-9893-6. PubMed DOI PMC
Shaffer R.E., Rengasamy S. Respiratory protection against airborne nanoparticles: A review. J. Nanopart. Res. 2009;11:1661. doi: 10.1007/s11051-009-9649-3. DOI
Vinh N., Kim H.-M. Electrospinning Fabrication and Performance Evaluation of Polyacrylonitrile Nanofiber for Air Filter Applications. Appl. Sci. 2016;6:235. doi: 10.3390/app6090235. DOI
Wu C.-M., Chou M.-H., Zeng W.-Y. Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes. Nanomaterials. 2018;8:420. doi: 10.3390/nano8060420. PubMed DOI PMC
Ge J.C., Choi N.J. Fabrication of Functional Polyurethane/Rare Earth Nanocomposite Membranes by Electrospinning and Its VOCs Absorption Capacity from Air. Nanomaterials. 2017;7:60. doi: 10.3390/nano7030060. PubMed DOI PMC
Matsumoto H., Tanioka A. Functionality in Electrospun Nanofibrous Membranes Based on Fiber’s Size, Surface Area, and Molecular Orientation. Membranes. 2011;1:249–264. doi: 10.3390/membranes1030249. PubMed DOI PMC
Ling T.Y., Wang J., Pui D.Y.H. Measurement of filtration efficiency of Nuclepore filters challenged with polystyrene latex nanoparticles: Experiments and modeling. J. Nanopart. Res. 2011;13:5415–5424. doi: 10.1007/s11051-011-0529-2. DOI
Chen S.-C., Wang J., Fissan H., Pui D.Y.H. Use of Nuclepore filters for ambient and workplace nanoparticle exposure assessment—Spherical particles. Atmos. Environ. 2013;77:385–393. doi: 10.1016/j.atmosenv.2013.05.007. DOI
Chen S.-C., Wang J., Fissan H., Pui D.Y.H. Exposure assessment of nanosized engineered agglomerates and aggregates using Nuclepore filter. J. Nanopart. Res. 2013;15:1955. doi: 10.1007/s11051-013-1955-0. DOI
Homaeigohar S., Elbahri M. Nanocomposite Electrospun Nanofiber Membranes for Environmental Remediation. Materials. 2014;7:1017–1045. doi: 10.3390/ma7021017. PubMed DOI PMC
Lin P.-H., Horng R.-Y., Hsu S.-F., Chen S.-S., Ho C.-H. A Feasibility Study of Ammonia Recovery from Coking Wastewater by Coupled Operation of a Membrane Contactor and Membrane Distillation. Int. J. Environ. Res. Public Health. 2018;15:441. doi: 10.3390/ijerph15030441. PubMed DOI PMC
Akhondi E., Zamani F., Tng K.H., Leslie G., Krantz W.B., Fane A.G., Chew J.W. The Performance and Fouling Control of Submerged Hollow Fiber (HF) Systems: A Review. Appl. Sci. 2017;7:765. doi: 10.3390/app7080765. DOI
Simone S., Galiano F., Faccini M., Boerrigter M.E., Chaumette C., Drioli E., Figoli A. Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment. Fibers. 2017;5:14. doi: 10.3390/fib5020014. DOI
Aluwi Shakir N.A., Wong K.Y., Noordin M.Y., Sudin I. Development of a High Performance PES Ultrafiltration Hollow Fiber Membrane for Oily Wastewater Treatment Using Response Surface Methodology. Sustainability. 2015;7:16465–16482. doi: 10.3390/su71215826. DOI
Chong K.C., Lai S.O., Lau W.J., Thiam H.S., Ismail A.F., Roslan R.A. Preparation, Characterization, and Performance Evaluation of Polysulfone Hollow Fiber Membrane with PEBAX or PDMS Coating for Oxygen Enhancement Process. Polymers. 2018;10:126. doi: 10.3390/polym10020126. PubMed DOI PMC
Brozova T., Raudensky M. Determination of surface wettability of polymeric hollow fibres. J. Elastom. Plast. 2018 doi: 10.1177/0095244318765041. DOI
Weiß K., Astrouski I., Reppich M., Raudenský M. Polymeric Hollow Fiber Bundles as Immersed Heat Exchangers. Chem. Eng. Technol. 2018 doi: 10.1002/ceat.201700014. DOI
Bulejko P., Dohnal M., Pospíšil J., Svěrák T. Air filtration performance of symmetric polypropylene hollow-fibre membranes for nanoparticle removal. Sep. Purif. Technol. 2018;197:122–128. doi: 10.1016/j.seppur.2017.12.056. DOI
Feng Y., Wang K., Davies C., Wang H. Carbon Nanotube/Alumina/Polyethersulfone Hybrid Hollow Fiber Membranes with Enhanced Mechanical and Anti-Fouling Properties. Nanomaterials. 2015;5:1366–1378. doi: 10.3390/nano5031366. PubMed DOI PMC
Wang Z., Wu A., Ciacchi L.C., Wei G. Recent Advances in Nanoporous Membranes for Water Purification. Nanomaterials. 2018;8:65. doi: 10.3390/nano8020065. PubMed DOI PMC
Experton J., Wu X., Martin C.R. From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes. Nanomaterials. 2017;7:445. doi: 10.3390/nano7120445. PubMed DOI PMC
Wang L.-Y., Yong W.F., Yu L.E., Chung T.-S. Design of high efficiency PVDF-PEG hollow fibers for air filtration of ultrafine particles. J. Membr. Sci. 2017;535:342–349. doi: 10.1016/j.memsci.2017.04.053. DOI
Li M., Feng Y., Wang K., Yong W.F., Yu L., Chung T.-S. Novel Hollow Fiber Air Filters for the Removal of Ultrafine Particles in PM2.5 with Repetitive Usage Capability. Environ. Sci. Technol. 2017;51:10041–10049. doi: 10.1021/acs.est.7b01494. PubMed DOI
Zena Membranes s.r.o. Brno, Czech Republic. [(accessed on 19 June 2018)]; Available online: www.zena-membranes.cz/
Asmatulu R., Muppalla H., Veisi Z., Khan W., Asaduzzaman A., Nuraje N. Study of Hydrophilic Electrospun Nanofiber Membranes for Filtration of Micro and Nanosize Suspended Particles. Membranes. 2013;3:375–388. doi: 10.3390/membranes3040375. PubMed DOI PMC
Zander N., Gillan M., Sweetser D. Recycled PET Nanofibers for Water Filtration Applications. Materials. 2016;9:247. doi: 10.3390/ma9040247. PubMed DOI PMC
Beatriz S.-P., Luis N., Leonor C., Laura M., Elena M., Yolanda F.-N. Imaging Techniques and Scanning Electron Microscopy as Tools for Characterizing a Si-Based Material Used in Air Monitoring Applications. Materials. 2016;9:109. doi: 10.3390/ma9020109. PubMed DOI PMC
Balamurugan R., Sundarrajan S., Ramakrishna S. Recent Trends in Nanofibrous Membranes and Their Suitability for Air and Water Filtrations. Membranes. 2011;1:232–248. doi: 10.3390/membranes1030232. PubMed DOI PMC
Galka N., Saxena A. High efficiency air filtration: The growing impact of membranes. Filtration. 2009;46:22–25. doi: 10.1016/S0015-1882(09)70157-0. DOI
Cyrs W.D., Boysen D.A., Casuccio G., Lersch T., Peters T.M. Nanoparticle collection efficiency of capillary pore membrane filters. J. Aerosol Sci. 2010;41:655–664. doi: 10.1016/j.jaerosci.2010.04.007. PubMed DOI PMC
Spurny K.R., Gentry J.W. Aerosol fractionization by graded nuclepore filters. A review. Powder Technol. 1979;24:129–142. doi: 10.1016/0032-5910(79)87029-1. DOI
Shaw G.E. Nuclepore filters as diffusion screens: Effect of barrel-shaped pore distortions. J. Aerosol Sci. 1985;16:307–313. doi: 10.1016/0021-8502(85)90038-2. DOI
Gentry J.W., Spurny K.R. Measurements of collection efficiency of nuclepore filters for asbestos fibers. J. Colloid Interface Sci. 1978;65:174–180. doi: 10.1016/0021-9797(78)90269-2. DOI
Romo-Kröger C.M. A qualitative study of atmospheric aerosols and particles deposited on flat membrane surfaces by microscopy and other techniques. Powder Technol. 2006;161:235–241. doi: 10.1016/j.powtec.2005.10.014. DOI
Wang C., Otani Y. Removal of Nanoparticles from Gas Streams by Fibrous Filters: A Review. Ind. Eng. Chem. Res. 2012;52:5–17. doi: 10.1021/ie300574m. DOI
Brown R.C. Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters. Elsevier Science & Technology Books; New York, NY, USA: 1993.
Maddineni A.K., Das D., Damodaran R.M. Air-borne particle capture by fibrous filter media under collision effect: A CFD-based approach. Sep. Purif. Technol. 2018;193:1–10. doi: 10.1016/j.seppur.2017.10.065. DOI
Kasper G., Schollmeier S., Meyer J., Hoferer J. The collection efficiency of a particle-loaded single filter fiber. J. Aerosol Sci. 2009;40:993–1009. doi: 10.1016/j.jaerosci.2009.09.005. DOI
Wang J., Chen D.R., Pui D.Y.H. Modeling of filtration efficiency of nanoparticles in standard filter media. J. Nanopart. Res. 2007;9:109–115. doi: 10.1007/s11051-006-9155-9. DOI
Kirsch A.A., Fuchs N.A. Studies on Fibrous Aerosol Filters—III Diffusional Deposition of Aerosols in Fibrous Filters. Ann. Occup. Hyg. 1968:299–304. doi: 10.1093/annhyg/11.4.299. PubMed DOI
Stechkina I., Kirsch A., Fuchs N. Studies on Fibrous Aerosol Filters—IV Calculation of Aerosol Deposition in Model Filters in the Range of Maximum Penetration. Ann. Occup. Hyg. 1969;12:1–8. doi: 10.1093/annhyg/12.1.1. PubMed DOI
Pich J. The filtration theory of highly dispersed aerosols. Staub Reinhalt. Luft. 1965;5:16–23. doi: 10.1135/cccc19663721. DOI
Lee K.W., Liu B.Y.H. Theoretical Study of Aerosol Filtration by Fibrous Filters. Aerosol Sci. Technol. 1982;1:147–161. doi: 10.1080/02786828208958584. DOI
Kirsch A.A., Stechkina I.B. The Theory of Aerosol Filtration with Fibrous Filters. In: Shaw D.T., editor. Fundamentals of Aerosol Science. Wiley; New York, NY, USA: 1978.
Liu B.Y.H., Rubow K.L. Efficiency, pressure drop and figure of merit of high efficiency fibrous and membrane filter media; Proceedings of the 5th World Filtration Congress; Nice, France. 5–8 June 1990; p. 112.
Payet S., Boulaud D., Madelaine G., Renoux A. Penetration and pressure drop of a HEPA filter during loading with submicron liquid particles. J. Aerosol Sci. 1992;23:723–735. doi: 10.1016/0021-8502(92)90039-X. DOI
Kuwabara S. The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers. J. Phys. Soc. Jpn. 1959;14:527–532. doi: 10.1143/JPSJ.14.527. DOI
Bałazy A., Podgórski A. Deposition efficiency of fractal-like aggregates in fibrous filters calculated using Brownian dynamics method. J. Colloid Interface Sci. 2007;311:323–337. doi: 10.1016/j.jcis.2007.03.008. PubMed DOI
Zhang Y. Indoor Air Quality Engineering. 1st ed. CRC Press; Boca Raton, FL, USA: 2005.
Lamb H. Hydrodynamics. University Press; Oxford, UK: 1916.
Langmuir I. OSRD Report No. 865. Office of Scientific Research and Development; Washington, DC, USA: 1942.
Stechkina I.B., Fuchs N.A.F. Studies on Fibrous Aerosol Filters—I. Calculation of Diffusional Deposition of Aerosols in Fibrous Filters. Ann. Occup. Hyg. 1966:59–64. doi: 10.1093/annhyg/9.2.59. PubMed DOI
Lee K.W., Gieseke J.A. Note on the approximation of interceptional collection efficiencies. J. Aerosol Sci. 1980;11:335–341. doi: 10.1016/0021-8502(80)90041-5. DOI
Pich J. The effectiveness of the barrier effect in fiber filters at small Knudsen numbers. Staub Reinhalt. Luft. 1966;26:1–4.
Landahl H.D., Herrmann R.G. Sampling of liquid aerosols by wires, cylinders, and slides, and the efficiency of impaction of the droplets. J. Colloid Sci. 1949;4:103–136. doi: 10.1016/0095-8522(49)90038-0. PubMed DOI
Saleh A.M., Hosseini S.A., Tafreshi H.V., Pourdeyhimi B. 3-D microscale simulation of dust-loading in thin flat-sheet filters: A comparison with 1-D macroscale simulations. Chem. Eng. Sci. 2013;99:284–291. doi: 10.1016/j.ces.2013.06.007. DOI
Fuchs N.A. The Mechanics of Aerosols. 1st ed. Pergamon Press; London, UK: 1964.
Gougeon R., Boulaud D., Renoux A. Comparison of theory and experiment in stationary filtration. J. Aerosol Sci. 1993;24:S273–S274. doi: 10.1016/0021-8502(93)90229-3. DOI
Friedlander S.K. Biochemical and Biological Engineering Science. Academic Press; London, UK: 1967. Aerosol Filtration by Fibrous Filters; pp. 49–67.
Zhu C., Lin C.-H., Cheung C.S. Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers. Powder Technol. 2000;112:149–162. doi: 10.1016/S0032-5910(99)00315-0. DOI
Suneja S.K., Lee C.H. Aerosol filtration by fibrous filters at intermediate Reynolds numbers (≤ 100) Atmos. Environ. 1974;8:1081–1094. doi: 10.1016/0004-6981(74)90043-2. DOI
Ilias S., Douglas P.L. Inertial impaction of aerosol particles on cylinders at intermediate and high reynolds numbers. Chem. Eng. Sci. 1989;44:81–99. doi: 10.1016/0009-2509(89)85235-2. DOI
Ptak T., Jaroszczyk T. Theoretical-Experimental Aerosol Filtration Model for Fibrous Filters at Intermediate Reynolds Numbers; Proceedings of the 5th World Filtration Congress; Nice, France. 5–8 June 1990; pp. 566–572.
Chambers F.W., Al-Sarkhi A., Yao S. Velocity distribution effects in air filter testing. Part. Sci. Technol. 2001;19:1–21. doi: 10.1080/0272-630191899733. DOI
Pich J. Impaction of aerosol particles in the neighbourhood of a circular hole. Collect. Czechoslov. Chem. Commun. 1964;29:2223–2227. doi: 10.1135/cccc19642223. DOI
Spurny K., Lodge J.P., Frank E.R., Sheesley D.C. Aerosol filtration by means of Nuclepore filters: Structural and filtration properties. Environ. Sci. Technol. 1969;3:453–464. doi: 10.1021/es60028a004. DOI
Manton M.J. Brownian diffusion of aerosols to the face of a nuclepore filter. Atmos. Environ. 1979;13:525–531. doi: 10.1016/0004-6981(79)90146-X. DOI
Lu Y., Shah K., Xu J. Synthesis, Morphologies and Building Applications of Nanostructured Polymers. Polymers. 2017;9:506. doi: 10.3390/polym9100506. PubMed DOI PMC
Leung W.W.-F., Hung C.-H., Yuen P.-T. Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Sep. Purif. Technol. 2010;71:30–37. doi: 10.1016/j.seppur.2009.10.017. DOI
Wang Q., Bai Y., Xie J., Jiang Q., Qiu Y. Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM 2.5 particles. Powder Technol. 2016;292:54–63. doi: 10.1016/j.powtec.2016.01.008. DOI
Wang J., Tronville P. Toward standardized test methods to determine the effectiveness of filtration media against airborne nanoparticles. J. Nanopart. Res. 2014;16 doi: 10.1007/s11051-014-2417-z. DOI
Rajagopalan R., Tien C. Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model. AIChE J. 1976;22:523–533. doi: 10.1002/aic.690220316. DOI
Zhong W., Pan N. Aerosol Filtration by Fibrous Filters: A Statistical Mechanics Approach. Text. Res. J. 2007;77:284–289. doi: 10.1177/0040517507078041. DOI
Israelachvili J.N. Intermolecular and Surface Forces. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2011.