Numerical Comparison of Prediction Models for Aerosol Filtration Efficiency Applied on a Hollow-Fiber Membrane Pore Structure

. 2018 Jun 19 ; 8 (6) : . [epub] 20180619

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29921781

Hollow-fiber membranes (HFMs) have been widely applied to many liquid treatment applications such as wastewater treatment, membrane contactors/bioreactors and membrane distillation. Despite the fact that HFMs are widely used for gas separation from gas mixtures, their use for mechanical filtration of aerosols is very scarce. In this work, we compared mathematical models developed for the prediction of air filtration efficiency by applying them on the structural parameters of polypropylene HFMs. These membranes are characteristic of pore diameters of about 90 nm and have high solidity, thus providing high potential for nanoparticle removal from air. A single fiber/collector and capillary pore approach was chosen to compare between models developed for fibrous filters and capillary-pore membranes (Nuclepore filters) based on three main mechanisms occurring in aerosol filtration (inertial impaction, interception and diffusion). The collection efficiency due to individual mechanisms differs significantly. The differences are caused by the parameters for which the individual models were developed, i.e., given values of governing dimensionless numbers (Reynolds, Stokes and Peclet number) and also given values of filter porosity and filter fiber diameter. Some models can be used to predict the efficiency of HFMs based on assumptions depending on the conditions and exact membrane parameters.

Zobrazit více v PubMed

Givehchi R., Tan Z. An Overview of Airborne Nanoparticle Filtration and Thermal Rebound Theory. Aerosol Air Qual. Res. 2014;14:45–63. doi: 10.4209/aaqr.2013.07.0239. DOI

Givehchi R., Tan Z. The effect of capillary force on airborne nanoparticle filtration. J. Aerosol Sci. 2015;83:12–24. doi: 10.1016/j.jaerosci.2015.02.001. DOI

Darçın M. Association between air quality and quality of life. Environ. Sci. Pollut. Res. 2014;21:1954–1959. doi: 10.1007/s11356-013-2101-3. PubMed DOI

Luo C., Zhu X., Yao C., Hou L., Zhang J., Cao J., Wang A. Short-term exposure to particulate air pollution and risk of myocardial infarction: a systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2015;22:14651–14662. doi: 10.1007/s11356-015-5188-x. PubMed DOI

Landlová L., Čupr P., Franců J., Klánová J., Lammel G. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere. Environ. Sci. Pollut. Res. 2014;21:6188–6204. doi: 10.1007/s11356-014-2571-y. PubMed DOI

Bulejko P., Adamec V., Schüllerová B., Skeřil R. Levels, sources, and health risk assessment of polycyclic aromatic hydrocarbons in Brno, Czech Republic: A 5-year study. Environ. Sci. Pollut. Res. 2016;23:20462–20473. doi: 10.1007/s11356-016-7172-5. PubMed DOI

Jung K.H., Yan B., Chillrud S.N., Perera F.P., Whyatt R., Camann D., Kinney P.L., Miller R.L. Assessment of Benzo(a)pyrene-equivalent Carcinogenicity and Mutagenicity of Residential Indoor versus Outdoor Polycyclic Aromatic Hydrocarbons Exposing Young Children in New York City. Int. J. Environ. Res. Public Health. 2010;7:1889–1900. doi: 10.3390/ijerph7051889. PubMed DOI PMC

Murr L.E., Soto K.F., Garza K.M., Guerrero P.A., Martinez F., Esquivel E.V., Ramirez D.A., Shi Y., Bang J.J., Venzor J., 3rd Combustion-Generated Nanoparticulates in the El Paso, TX, USA/Juarez, Mexico Metroplex: Their Comparative Characterization and Potential for Adverse Health Effects. Int. J. Environ. Res. Public Health. 2006;3:48–66. doi: 10.3390/ijerph2006030007. PubMed DOI PMC

Pini M., Cedillo González E.I., Neri P., Siligardi C., Ferrari A.M. Assessment of Environmental Performance of TiO2 Nanoparticles Coated Self-Cleaning Float Glass. Coatings. 2017;7:8. doi: 10.3390/coatings7010008. DOI

Kumar P., Fennell P., Robins A. Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities. J. Nanopart. Res. 2010;12:1523–1530. doi: 10.1007/s11051-010-9893-6. PubMed DOI PMC

Shaffer R.E., Rengasamy S. Respiratory protection against airborne nanoparticles: A review. J. Nanopart. Res. 2009;11:1661. doi: 10.1007/s11051-009-9649-3. DOI

Vinh N., Kim H.-M. Electrospinning Fabrication and Performance Evaluation of Polyacrylonitrile Nanofiber for Air Filter Applications. Appl. Sci. 2016;6:235. doi: 10.3390/app6090235. DOI

Wu C.-M., Chou M.-H., Zeng W.-Y. Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes. Nanomaterials. 2018;8:420. doi: 10.3390/nano8060420. PubMed DOI PMC

Ge J.C., Choi N.J. Fabrication of Functional Polyurethane/Rare Earth Nanocomposite Membranes by Electrospinning and Its VOCs Absorption Capacity from Air. Nanomaterials. 2017;7:60. doi: 10.3390/nano7030060. PubMed DOI PMC

Matsumoto H., Tanioka A. Functionality in Electrospun Nanofibrous Membranes Based on Fiber’s Size, Surface Area, and Molecular Orientation. Membranes. 2011;1:249–264. doi: 10.3390/membranes1030249. PubMed DOI PMC

Ling T.Y., Wang J., Pui D.Y.H. Measurement of filtration efficiency of Nuclepore filters challenged with polystyrene latex nanoparticles: Experiments and modeling. J. Nanopart. Res. 2011;13:5415–5424. doi: 10.1007/s11051-011-0529-2. DOI

Chen S.-C., Wang J., Fissan H., Pui D.Y.H. Use of Nuclepore filters for ambient and workplace nanoparticle exposure assessment—Spherical particles. Atmos. Environ. 2013;77:385–393. doi: 10.1016/j.atmosenv.2013.05.007. DOI

Chen S.-C., Wang J., Fissan H., Pui D.Y.H. Exposure assessment of nanosized engineered agglomerates and aggregates using Nuclepore filter. J. Nanopart. Res. 2013;15:1955. doi: 10.1007/s11051-013-1955-0. DOI

Homaeigohar S., Elbahri M. Nanocomposite Electrospun Nanofiber Membranes for Environmental Remediation. Materials. 2014;7:1017–1045. doi: 10.3390/ma7021017. PubMed DOI PMC

Lin P.-H., Horng R.-Y., Hsu S.-F., Chen S.-S., Ho C.-H. A Feasibility Study of Ammonia Recovery from Coking Wastewater by Coupled Operation of a Membrane Contactor and Membrane Distillation. Int. J. Environ. Res. Public Health. 2018;15:441. doi: 10.3390/ijerph15030441. PubMed DOI PMC

Akhondi E., Zamani F., Tng K.H., Leslie G., Krantz W.B., Fane A.G., Chew J.W. The Performance and Fouling Control of Submerged Hollow Fiber (HF) Systems: A Review. Appl. Sci. 2017;7:765. doi: 10.3390/app7080765. DOI

Simone S., Galiano F., Faccini M., Boerrigter M.E., Chaumette C., Drioli E., Figoli A. Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment. Fibers. 2017;5:14. doi: 10.3390/fib5020014. DOI

Aluwi Shakir N.A., Wong K.Y., Noordin M.Y., Sudin I. Development of a High Performance PES Ultrafiltration Hollow Fiber Membrane for Oily Wastewater Treatment Using Response Surface Methodology. Sustainability. 2015;7:16465–16482. doi: 10.3390/su71215826. DOI

Chong K.C., Lai S.O., Lau W.J., Thiam H.S., Ismail A.F., Roslan R.A. Preparation, Characterization, and Performance Evaluation of Polysulfone Hollow Fiber Membrane with PEBAX or PDMS Coating for Oxygen Enhancement Process. Polymers. 2018;10:126. doi: 10.3390/polym10020126. PubMed DOI PMC

Brozova T., Raudensky M. Determination of surface wettability of polymeric hollow fibres. J. Elastom. Plast. 2018 doi: 10.1177/0095244318765041. DOI

Weiß K., Astrouski I., Reppich M., Raudenský M. Polymeric Hollow Fiber Bundles as Immersed Heat Exchangers. Chem. Eng. Technol. 2018 doi: 10.1002/ceat.201700014. DOI

Bulejko P., Dohnal M., Pospíšil J., Svěrák T. Air filtration performance of symmetric polypropylene hollow-fibre membranes for nanoparticle removal. Sep. Purif. Technol. 2018;197:122–128. doi: 10.1016/j.seppur.2017.12.056. DOI

Feng Y., Wang K., Davies C., Wang H. Carbon Nanotube/Alumina/Polyethersulfone Hybrid Hollow Fiber Membranes with Enhanced Mechanical and Anti-Fouling Properties. Nanomaterials. 2015;5:1366–1378. doi: 10.3390/nano5031366. PubMed DOI PMC

Wang Z., Wu A., Ciacchi L.C., Wei G. Recent Advances in Nanoporous Membranes for Water Purification. Nanomaterials. 2018;8:65. doi: 10.3390/nano8020065. PubMed DOI PMC

Experton J., Wu X., Martin C.R. From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes. Nanomaterials. 2017;7:445. doi: 10.3390/nano7120445. PubMed DOI PMC

Wang L.-Y., Yong W.F., Yu L.E., Chung T.-S. Design of high efficiency PVDF-PEG hollow fibers for air filtration of ultrafine particles. J. Membr. Sci. 2017;535:342–349. doi: 10.1016/j.memsci.2017.04.053. DOI

Li M., Feng Y., Wang K., Yong W.F., Yu L., Chung T.-S. Novel Hollow Fiber Air Filters for the Removal of Ultrafine Particles in PM2.5 with Repetitive Usage Capability. Environ. Sci. Technol. 2017;51:10041–10049. doi: 10.1021/acs.est.7b01494. PubMed DOI

Zena Membranes s.r.o. Brno, Czech Republic. [(accessed on 19 June 2018)]; Available online: www.zena-membranes.cz/

Asmatulu R., Muppalla H., Veisi Z., Khan W., Asaduzzaman A., Nuraje N. Study of Hydrophilic Electrospun Nanofiber Membranes for Filtration of Micro and Nanosize Suspended Particles. Membranes. 2013;3:375–388. doi: 10.3390/membranes3040375. PubMed DOI PMC

Zander N., Gillan M., Sweetser D. Recycled PET Nanofibers for Water Filtration Applications. Materials. 2016;9:247. doi: 10.3390/ma9040247. PubMed DOI PMC

Beatriz S.-P., Luis N., Leonor C., Laura M., Elena M., Yolanda F.-N. Imaging Techniques and Scanning Electron Microscopy as Tools for Characterizing a Si-Based Material Used in Air Monitoring Applications. Materials. 2016;9:109. doi: 10.3390/ma9020109. PubMed DOI PMC

Balamurugan R., Sundarrajan S., Ramakrishna S. Recent Trends in Nanofibrous Membranes and Their Suitability for Air and Water Filtrations. Membranes. 2011;1:232–248. doi: 10.3390/membranes1030232. PubMed DOI PMC

Galka N., Saxena A. High efficiency air filtration: The growing impact of membranes. Filtration. 2009;46:22–25. doi: 10.1016/S0015-1882(09)70157-0. DOI

Cyrs W.D., Boysen D.A., Casuccio G., Lersch T., Peters T.M. Nanoparticle collection efficiency of capillary pore membrane filters. J. Aerosol Sci. 2010;41:655–664. doi: 10.1016/j.jaerosci.2010.04.007. PubMed DOI PMC

Spurny K.R., Gentry J.W. Aerosol fractionization by graded nuclepore filters. A review. Powder Technol. 1979;24:129–142. doi: 10.1016/0032-5910(79)87029-1. DOI

Shaw G.E. Nuclepore filters as diffusion screens: Effect of barrel-shaped pore distortions. J. Aerosol Sci. 1985;16:307–313. doi: 10.1016/0021-8502(85)90038-2. DOI

Gentry J.W., Spurny K.R. Measurements of collection efficiency of nuclepore filters for asbestos fibers. J. Colloid Interface Sci. 1978;65:174–180. doi: 10.1016/0021-9797(78)90269-2. DOI

Romo-Kröger C.M. A qualitative study of atmospheric aerosols and particles deposited on flat membrane surfaces by microscopy and other techniques. Powder Technol. 2006;161:235–241. doi: 10.1016/j.powtec.2005.10.014. DOI

Wang C., Otani Y. Removal of Nanoparticles from Gas Streams by Fibrous Filters: A Review. Ind. Eng. Chem. Res. 2012;52:5–17. doi: 10.1021/ie300574m. DOI

Brown R.C. Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters. Elsevier Science & Technology Books; New York, NY, USA: 1993.

Maddineni A.K., Das D., Damodaran R.M. Air-borne particle capture by fibrous filter media under collision effect: A CFD-based approach. Sep. Purif. Technol. 2018;193:1–10. doi: 10.1016/j.seppur.2017.10.065. DOI

Kasper G., Schollmeier S., Meyer J., Hoferer J. The collection efficiency of a particle-loaded single filter fiber. J. Aerosol Sci. 2009;40:993–1009. doi: 10.1016/j.jaerosci.2009.09.005. DOI

Wang J., Chen D.R., Pui D.Y.H. Modeling of filtration efficiency of nanoparticles in standard filter media. J. Nanopart. Res. 2007;9:109–115. doi: 10.1007/s11051-006-9155-9. DOI

Kirsch A.A., Fuchs N.A. Studies on Fibrous Aerosol Filters—III Diffusional Deposition of Aerosols in Fibrous Filters. Ann. Occup. Hyg. 1968:299–304. doi: 10.1093/annhyg/11.4.299. PubMed DOI

Stechkina I., Kirsch A., Fuchs N. Studies on Fibrous Aerosol Filters—IV Calculation of Aerosol Deposition in Model Filters in the Range of Maximum Penetration. Ann. Occup. Hyg. 1969;12:1–8. doi: 10.1093/annhyg/12.1.1. PubMed DOI

Pich J. The filtration theory of highly dispersed aerosols. Staub Reinhalt. Luft. 1965;5:16–23. doi: 10.1135/cccc19663721. DOI

Lee K.W., Liu B.Y.H. Theoretical Study of Aerosol Filtration by Fibrous Filters. Aerosol Sci. Technol. 1982;1:147–161. doi: 10.1080/02786828208958584. DOI

Kirsch A.A., Stechkina I.B. The Theory of Aerosol Filtration with Fibrous Filters. In: Shaw D.T., editor. Fundamentals of Aerosol Science. Wiley; New York, NY, USA: 1978.

Liu B.Y.H., Rubow K.L. Efficiency, pressure drop and figure of merit of high efficiency fibrous and membrane filter media; Proceedings of the 5th World Filtration Congress; Nice, France. 5–8 June 1990; p. 112.

Payet S., Boulaud D., Madelaine G., Renoux A. Penetration and pressure drop of a HEPA filter during loading with submicron liquid particles. J. Aerosol Sci. 1992;23:723–735. doi: 10.1016/0021-8502(92)90039-X. DOI

Kuwabara S. The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers. J. Phys. Soc. Jpn. 1959;14:527–532. doi: 10.1143/JPSJ.14.527. DOI

Bałazy A., Podgórski A. Deposition efficiency of fractal-like aggregates in fibrous filters calculated using Brownian dynamics method. J. Colloid Interface Sci. 2007;311:323–337. doi: 10.1016/j.jcis.2007.03.008. PubMed DOI

Zhang Y. Indoor Air Quality Engineering. 1st ed. CRC Press; Boca Raton, FL, USA: 2005.

Lamb H. Hydrodynamics. University Press; Oxford, UK: 1916.

Langmuir I. OSRD Report No. 865. Office of Scientific Research and Development; Washington, DC, USA: 1942.

Stechkina I.B., Fuchs N.A.F. Studies on Fibrous Aerosol Filters—I. Calculation of Diffusional Deposition of Aerosols in Fibrous Filters. Ann. Occup. Hyg. 1966:59–64. doi: 10.1093/annhyg/9.2.59. PubMed DOI

Lee K.W., Gieseke J.A. Note on the approximation of interceptional collection efficiencies. J. Aerosol Sci. 1980;11:335–341. doi: 10.1016/0021-8502(80)90041-5. DOI

Pich J. The effectiveness of the barrier effect in fiber filters at small Knudsen numbers. Staub Reinhalt. Luft. 1966;26:1–4.

Landahl H.D., Herrmann R.G. Sampling of liquid aerosols by wires, cylinders, and slides, and the efficiency of impaction of the droplets. J. Colloid Sci. 1949;4:103–136. doi: 10.1016/0095-8522(49)90038-0. PubMed DOI

Saleh A.M., Hosseini S.A., Tafreshi H.V., Pourdeyhimi B. 3-D microscale simulation of dust-loading in thin flat-sheet filters: A comparison with 1-D macroscale simulations. Chem. Eng. Sci. 2013;99:284–291. doi: 10.1016/j.ces.2013.06.007. DOI

Fuchs N.A. The Mechanics of Aerosols. 1st ed. Pergamon Press; London, UK: 1964.

Gougeon R., Boulaud D., Renoux A. Comparison of theory and experiment in stationary filtration. J. Aerosol Sci. 1993;24:S273–S274. doi: 10.1016/0021-8502(93)90229-3. DOI

Friedlander S.K. Biochemical and Biological Engineering Science. Academic Press; London, UK: 1967. Aerosol Filtration by Fibrous Filters; pp. 49–67.

Zhu C., Lin C.-H., Cheung C.S. Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers. Powder Technol. 2000;112:149–162. doi: 10.1016/S0032-5910(99)00315-0. DOI

Suneja S.K., Lee C.H. Aerosol filtration by fibrous filters at intermediate Reynolds numbers (≤ 100) Atmos. Environ. 1974;8:1081–1094. doi: 10.1016/0004-6981(74)90043-2. DOI

Ilias S., Douglas P.L. Inertial impaction of aerosol particles on cylinders at intermediate and high reynolds numbers. Chem. Eng. Sci. 1989;44:81–99. doi: 10.1016/0009-2509(89)85235-2. DOI

Ptak T., Jaroszczyk T. Theoretical-Experimental Aerosol Filtration Model for Fibrous Filters at Intermediate Reynolds Numbers; Proceedings of the 5th World Filtration Congress; Nice, France. 5–8 June 1990; pp. 566–572.

Chambers F.W., Al-Sarkhi A., Yao S. Velocity distribution effects in air filter testing. Part. Sci. Technol. 2001;19:1–21. doi: 10.1080/0272-630191899733. DOI

Pich J. Impaction of aerosol particles in the neighbourhood of a circular hole. Collect. Czechoslov. Chem. Commun. 1964;29:2223–2227. doi: 10.1135/cccc19642223. DOI

Spurny K., Lodge J.P., Frank E.R., Sheesley D.C. Aerosol filtration by means of Nuclepore filters: Structural and filtration properties. Environ. Sci. Technol. 1969;3:453–464. doi: 10.1021/es60028a004. DOI

Manton M.J. Brownian diffusion of aerosols to the face of a nuclepore filter. Atmos. Environ. 1979;13:525–531. doi: 10.1016/0004-6981(79)90146-X. DOI

Lu Y., Shah K., Xu J. Synthesis, Morphologies and Building Applications of Nanostructured Polymers. Polymers. 2017;9:506. doi: 10.3390/polym9100506. PubMed DOI PMC

Leung W.W.-F., Hung C.-H., Yuen P.-T. Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Sep. Purif. Technol. 2010;71:30–37. doi: 10.1016/j.seppur.2009.10.017. DOI

Wang Q., Bai Y., Xie J., Jiang Q., Qiu Y. Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM 2.5 particles. Powder Technol. 2016;292:54–63. doi: 10.1016/j.powtec.2016.01.008. DOI

Wang J., Tronville P. Toward standardized test methods to determine the effectiveness of filtration media against airborne nanoparticles. J. Nanopart. Res. 2014;16 doi: 10.1007/s11051-014-2417-z. DOI

Rajagopalan R., Tien C. Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model. AIChE J. 1976;22:523–533. doi: 10.1002/aic.690220316. DOI

Zhong W., Pan N. Aerosol Filtration by Fibrous Filters: A Statistical Mechanics Approach. Text. Res. J. 2007;77:284–289. doi: 10.1177/0040517507078041. DOI

Israelachvili J.N. Intermolecular and Surface Forces. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2011.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

An Assessment on Average Pressure Drop and Dust-Holding Capacity of Hollow-Fiber Membranes in Air Filtration

. 2021 Jun 24 ; 11 (7) : . [epub] 20210624

Fully Polymeric Distillation Unit Based on Polypropylene Hollow Fibers

. 2021 Mar 26 ; 13 (7) : . [epub] 20210326

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...