Fully Polymeric Distillation Unit Based on Polypropylene Hollow Fibers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000753
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33810297
PubMed Central
PMC8037513
DOI
10.3390/polym13071031
PII: polym13071031
Knihovny.cz E-zdroje
- Klíčová slova
- heat transfer, hollow fiber membranes, polypropylene, sweep gas membrane distillation,
- Publikační typ
- časopisecké články MeSH
Access to pure water is a very topical issue today. Desalination represents a promising way of obtaining drinking water in areas of shortage. Currently, efforts are being made to replace the metal components of existing desalination units due to the high corrosivity of sea water. Another requirement is easy transportation and assembly. The presented solution combines two types of polymeric hollow fibers that are used to create the distillation unit. Porous polypropylene hollow fiber membranes have been used as an active surface for mass transfer in the distillation unit, while non-porous thermal polypropylene hollow fibers have been employed in the condenser. The large active area to volume ratio of the hollow fiber module improves the efficiency of both units. Hot water is pumped inside the membranes in the distillation unit. Evaporation is first observed at a temperature gradient of 10 °C. The water vapor flows through the tunnel to the condenser where cold water runs inside the fibers. The temperature gradient causes condensation of the vapor, and the condensate is collected. The article presents data for hot water at temperatures of 55, 60, and 65 °C. Optimization of the membrane module is evaluated and presented.
Zobrazit více v PubMed
Camacho L.M., Dumée L., Zhang J., Li J., Duke M., Gomez J., Gray S. Advances in Membrane Distillation for Water Desalination and Purification Applications. Water. 2013;5:94–196. doi: 10.3390/w5010094. DOI
Khayet M. Membranes and theoretical modeling of membrane distillation: A review. Adv. Colloid Interface Sci. 2011;164:56–88. doi: 10.1016/j.cis.2010.09.005. PubMed DOI
Bernauer B., Bleha M., Bouzek K., Černín A., Fíla V., Friess K., Izák P., Jiránková H., Kárászová M., Kočiřík M., et al. In: Membránové Procesy. 1st ed. Palatý Z., editor. VŠCHT; Praha, Czech Republic: 2012.
Sørensen E., Lam K.F., Sudhoff D. Chapter 9—Special Distillation Applications. In: Górak A., Schoenmakers H., editors. Distillation. Academic Studies Press; Boston, MA, USA: 2014. pp. 367–401.
Koschikowski J., Wieghaus M., Rommel M. Solar Thermal-Driven Desalination Plants Based on Membrane Distillation. Desalination. 2003;156:295–304. doi: 10.1016/S0011-9164(03)00360-6. DOI
Bulejko P. Numerical Comparison of Prediction Models for Aerosol Filtration Efficiency Applied on a Hollow-Fiber Membrane Pore Structure. Nanomaterials. 2018;8:447. doi: 10.3390/nano8060447. PubMed DOI PMC
Sverak T., Bulejko P., Ostrezi J., Kristof O., Kalivoda J., Kejik P., Mayerova K., Adamcik M. Separation of Gaseous Air Pollutants Using Membrane Contactors. IOP Conf. Ser. Earth Environ. Sci. 2017;92:012061. doi: 10.1088/1755-1315/92/1/012061. DOI
Bulejko P., Svěrák T., Dohnal M., Pospíšil J. Aerosol Filtration Using Hollow-Fiber Membranes: Effect of Permeate Velocity and Dust Amount on Separation of Submicron TiO2 Particles. Powder Technol. 2018;340:344–353. doi: 10.1016/j.powtec.2018.09.040. DOI
Bulejko P., Krištof O., Dohnal M., Svěrák T. Fine/Ultrafine Particle Air Filtration and Aerosol Loading of Hollow-Fiber Membranes: A Comparison of Mathematical Models for the Most Penetrating Particle Size and Dimensionless Permeability with Experimental Data. J. Membr. Sci. 2019;592:117393. doi: 10.1016/j.memsci.2019.117393. DOI
Lam K.F., Sorensen E., Gavriilidis A. Review on Gas—Liquid Separations in Microchannel Devices. Chem. Eng. Res. Des. 2013;91:1941–1953. doi: 10.1016/j.cherd.2013.07.031. DOI
Schofield R.W., Fane A.G., Fell C.J.D. Heat and Mass Transfer in Membrane Distillation. J. Membr. Sci. 1987;33:299–313. doi: 10.1016/S0376-7388(00)80287-2. DOI
Koplik J., Banavar J.R., Willemsen J.F. Molecular Dynamics of Poiseuille Flow and Moving Contact Lines. Phys. Rev. Lett. 1988;60:1282–1285. doi: 10.1103/PhysRevLett.60.1282. PubMed DOI
Alkhudhiri A., Darwish N., Hilal N. Membrane Distillation: A Comprehensive Review. Desalination. 2012;287:2–18. doi: 10.1016/j.desal.2011.08.027. DOI
Curcio E., Drioli E. Membrane distillation and related operations—A review. Sep. Purif. Rev. 2005;34:35–86. doi: 10.1081/SPM-200054951. DOI
Eckardt N.A., Cominelli E., Galbiati M., Tonelli C. The future of science: Food and water for life. Plant Cell. 2009;21:368–372. doi: 10.1105/tpc.109.066209. PubMed DOI PMC
Shirazi M.M.A., Kargari A., Shirazi M.J.A. Direct contact membrane distillation for seawater desalination. Desalination Water Treat. 2012;49:368–375. doi: 10.1080/19443994.2012.719466. DOI
Shiklomanov I.A. World fresh water resources. In: Gleick P.H., editor. Water in Crisis: A Guide to the World’s Fresh Water Resources. Oxford University Press; New York, NY, USA: 1993.
Gryta M. Concentration of Saline Wastewater from the Production of Heparin. Desalination. 2000;129:35–44. doi: 10.1016/S0011-9164(00)00049-7. DOI
Eykens L., De Sitter K., Dotremont C., Pinoy L., van der Bruggen B. Membrane Synthesis for Membrane Distillation: A Review. Sep. Purif. Technol. 2017;182:36–51. doi: 10.1016/j.seppur.2017.03.035. DOI
Franken A.C.M., Nolten J.A.M., Mulder M.H.V., Bargeman D., Smolders C.A. Wetting Criteria for the Applicability of Membrane Distillation. J. Membr. Sci. 1987;33:315–328. doi: 10.1016/S0376-7388(00)80288-4. DOI
Kwok D.Y., Neumann A.W. Contact Angle Measurement and Contact Angle Interpretation. Adv. Colloid Interface Sci. 1999;81:167–249. doi: 10.1016/S0001-8686(98)00087-6. DOI
Brozova T., Raudensky M. Determination of Surface Wettability of Polymeric Hollow Fibres. J. Elastomers Plast. 2018;50:737–746. doi: 10.1177/0095244318765041. DOI
Lawson K.W., Lloyd D.R. Membrane Distillation. J. Membr. Sci. 1997;124:1–25. doi: 10.1016/S0376-7388(96)00236-0. DOI
Khayet M., Khulbe K.C., Matsuura T. Characterization of Membranes for Membrane Distillation by Atomic Force Microscopy and Estimation of Their Water Vapor Transfer Coefficients in Vacuum Membrane Distillation Process. J. Membr. Sci. 2004;238:199–211. doi: 10.1016/j.memsci.2004.03.036. DOI
Al-Obaidani S., Curcio E., Macedonio F., Di Profio G., Al-Hinai H., Drioli E. Potential of Membrane Distillation in Seawater Desalination: Thermal Efficiency, Sensitivity Study and Cost Estimation. J. Membr. Sci. 2008;323:85–98. doi: 10.1016/j.memsci.2008.06.006. DOI
Bonyadi S., Chung T.S. Flux Enhancement in Membrane Distillation by Fabrication of Dual Layer Hydrophilic—Hydrophobic Hollow Fiber Membranes. J. Membr. Sci. 2007;306:134–146. doi: 10.1016/j.memsci.2007.08.034. DOI
ZENA MEMBRANES. [(accessed on 8 July 2020)]; Available online: http://www.zena-membranes.cz/
Du H., Li J., Zhang J., Su G., Li X., Zhao Y. Separation of Hydrogen and Nitrogen Gases with Porous Graphene Membrane. J. Phys. Chem. C. 2011;115:23261–23266. doi: 10.1021/jp206258u. DOI
Kullab A., Martin A. Membrane Distillation and Applications for Water Purification in Thermal Cogeneration Plants. Sep. Purif. Technol. 2011;76:231–237. doi: 10.1016/j.seppur.2010.09.028. DOI
Hausmann A., Sanciolo P., Vasiljevic T., Weeks M., Schroën K., Gray S., Duke M. Fouling Mechanisms of Dairy Streams during Membrane Distillation. J. Membr. Sci. 2013;441:102–111. doi: 10.1016/j.memsci.2013.03.043. DOI
Ding Z., Liu L., Yu J., Ma R., Yang Z. Concentrating the Extract of Traditional Chinese Medicine by Direct Contact Membrane Distillation. J. Membr. Sci. 2008;310:539–549. doi: 10.1016/j.memsci.2007.11.036. DOI
Gryta M. Fouling in Direct Contact Membrane Distillation Process. J. Membr. Sci. 2008;325:383–394. doi: 10.1016/j.memsci.2008.08.001. DOI
Ge J., Peng Y., Li Z., Chen P., Wang S. Membrane Fouling and Wetting in a DCMD Process for RO Brine Concentration. Desalination. 2014;344:97–107. doi: 10.1016/j.desal.2014.03.017. DOI
Chen G., Yang X., Wang R., Fane A.G. Performance Enhancement and Scaling Control with Gas Bubbling in Direct Contact Membrane Distillation. Desalination. 2013;308:47–55. doi: 10.1016/j.desal.2012.07.018. DOI
Gryta M. Polyphosphates Used for Membrane Scaling Inhibition during Water Desalination by Membrane Distillation. Desalination. 2012;285:170–176. doi: 10.1016/j.desal.2011.09.051. DOI
Al-Janabi A., Malayeri M.R., Guillén-Burrieza E., Blanco J. Field Evaluation of Coated Plates of a Compact Heat Exchanger to Mitigate Crystallization Deposit Formation in an MD Desalination Plant. Desalination. 2013;324:21–33. doi: 10.1016/j.desal.2013.05.020. DOI
Zarkadas D.M., Sirkar K.K. Polymeric Hollow Fiber Heat Exchangers: An Alternative for Lower Temperature Applications. Ind. Eng. Chem. Res. 2004;43:8093–8106. doi: 10.1021/ie040143k. DOI
Brozova T. Ph.D. Thesis. Brno University of Technology; Brno, Czech Republic: 2018. Phase Changes on Heat Exchanger Surfaces with Hollow Fibers.
Astrouski I., Raudensky M. The Study of Polymeric Hollow Fiber Heat Exchangers; Proceedings of the Engineering Mechanics 2012; Svratka, Czech Republic. 14–17 May 2012; pp. 47–57.
Heat Transfer and Fluid Flow Laboratory—Brno University of Technology, Faculty of Mechanical Engineering. [(accessed on 12 January 2021)]; Available online: https://www.heatlab.cz/
Raudenský M., Astrouski I., Dohnal M. Intensification of Heat Transfer of Polymeric Hollow Fiber Heat Exchangers by Chaotisation. Appl. Therm. Eng. 2017;113:632–638. doi: 10.1016/j.applthermaleng.2016.11.038. DOI
Bartuli E., Raudensky M. The Influence of Hollow Fibers Orientation inside the Polymeric Hollow Fiber Heat Exchanger on the Heat Transfer Intensity; Proceedings of the Engineering Mechanics 2018; Svratka, Czech Republic. 14–17 May 2018; pp. 61–64.
Bartuli E., Kůdelová T., Raudenský M. Shell-and-Tube Polymeric Hollow Fiber Heat Exchangers with Parallel and Crossed Fibers. Appl. Therm. Eng. 2021;182:116001. doi: 10.1016/j.applthermaleng.2020.116001. DOI
Astrouski I., Raudensky M., Dohnal M. Fouling of Polymeric Hollow Fiber Heat Exchanger by Wastewater. Chem. Eng. Trans. 2015;45:949–954. doi: 10.3303/CET1545159. DOI
Astrouski I. Ph.D. Thesis. Brno University of Technology; Brno, Czech Republic: 2016. Polymeric Hollow Fiber Heat Exchanger Design.
Brožová T., Luks T., Astrouski I., Raudenský M. Fatigue Testing of Polymeric Hollow Fibre Heat Transfer Surfaces by Pulsating Pressure Loads. [(accessed on 8 July 2020)]; Available online: https://www.scientific.net/AMM.821.3.
Weiß K., Astrouski I., Reppich M., Raudenský M. Polymeric Hollow-Fiber Bundles as Immersed Heat Exchangers. Chem. Eng. Technol. 2018;41:1457–1465. doi: 10.1002/ceat.201700014. DOI
Krásný I., Astrouski I., Raudenský M. Polymeric Hollow Fiber Heat Exchanger as an Automotive Radiator. Appl. Therm. Eng. 2016;108:798–803. doi: 10.1016/j.applthermaleng.2016.07.181. DOI
Brozova T., Bartuli E. Influence of Condensation on the Outer Surface of Polymer Hollow Fiber Heat Exchangers During Heat Transfer. ASME Digital Collection; New York, NY, USA: 2018.
Brozova T., Bartuli E., Raudensky M. Condensation on the Outer Surface of Polymer Hollow Fiber Heat Exchangers and Its Influence to the Heat Transfer; Proceedings of the Engineering Mechanics 2018; Svratka, Czech Republic. 14–17 May 2018; pp. 117–120.
Raudenský M., Astrouski I., Brožová T., Bartuli E. Flexible Polymeric Hollow Fiber Heat Exchangers for Electronic Systems; Proceedings of the 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); Las Vegas, NV, USA. 31 May–3 June 2016; pp. 1143–1147.
Bohacek J., Raudensky M., Kroulikova T., Karimi-Sibaki E. Polymeric Hollow Fibers: A Supercompact Cooling of Li-Ion Cells. Int. J. Therm. Sci. 2019;146:106060. doi: 10.1016/j.ijthermalsci.2019.106060. DOI
El-Bourawi M.S., Ding Z., Ma R., Khayet M. A Framework for Better Understanding Membrane Distillation Separation Process. J. Membr. Sci. 2006;285:4–29. doi: 10.1016/j.memsci.2006.08.002. DOI
Drioli E., Criscuoli A., Curcio E. Membrane Contactors: Fundamentals, Applications and Potentialities. Elsevier; Amsterdam, The Netherlands: 2005.
Summers E.K., Arafat H.A., Lienhard J.H. Energy Efficiency Comparison of Single-Stage Membrane Distillation (MD) Desalination Cycles in Different Configurations. Desalination. 2012;290:54–66. doi: 10.1016/j.desal.2012.01.004. DOI
Cerneaux S., Strużyńska I., Kujawski W.M., Persin M., Larbot A. Comparison of Various Membrane Distillation Methods for Desalination Using Hydrophobic Ceramic Membranes. J. Membr. Sci. 2009;337:55–60. doi: 10.1016/j.memsci.2009.03.025. DOI
Ding Z., Liu L., Li Z., Ma R., Yang Z. Experimental Study of Ammonia Removal from Water by Membrane Distillation (MD): The Comparison of Three Configurations. J. Membr. Sci. 2006;286:93–103. doi: 10.1016/j.memsci.2006.09.015. DOI
Souhaimi M.K., Matsuura T. Membrane Distillation: Principles and Applications. 1st ed. Elsevier; Amsterdam, The Netherlands: 2011.
Dosal. [(accessed on 8 July 2020)]; Available online: http://ebc.steno.cz/produkt/dosal.
Matheswaran M., Kwon T.O., Kim J.W., Moon I.S. Factors Affecting Flux and Water Separation Performance in Air Gap Membrane Distillation. J. Ind. Eng. Chem. 2007;13:965–970.
Geng H., Wu H., Li P., He Q. Study on a New Air-Gap Membrane Distillation Module for Desalination. Desalination. 2014;334:29–38. doi: 10.1016/j.desal.2013.11.037. DOI
Ho C.-D., Chen L., Huang M.-C., Lai J.-Y., Chen Y.-A. Distillate Flux Enhancement in the Air Gap Membrane Distillation with Inserting Carbon-Fiber Spacers. Sep. Sci. Technol. 2017;52:2817–2828. doi: 10.1080/01496395.2017.1367809. DOI
Eykens L., Reyns T., De Sitter K., Dotremont C., Pinoy L., van der Bruggen B. How to Select a Membrane Distillation Configuration? Process Conditions and Membrane Influence Unraveled. Desalination. 2016;399:105–115. doi: 10.1016/j.desal.2016.08.019. DOI