An Assessment on Average Pressure Drop and Dust-Holding Capacity of Hollow-Fiber Membranes in Air Filtration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_026/0008392
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34202790
PubMed Central
PMC8306576
DOI
10.3390/membranes11070467
PII: membranes11070467
Knihovny.cz E-zdroje
- Klíčová slova
- air filtration, dust-holding capacity, hollow-fiber membrane, pressure drop,
- Publikační typ
- časopisecké články MeSH
In this work, we tried to analyze dust loading behavior of polypropylene hollow fiber membranes using average pressure drop models. Hollow fiber membranes varying in fiber diameter were loaded with a standardized test dust to simulate particle-polluted air. We measured pressure drop development of the membranes at different flowrates and dust concentrations, and, after each experiment, the dust deposited on the membrane fibers was weighed to obtain dust holding capacity (DHC). The obtained experimental data was analyzed using various average pressure drop models and compared with average pressure drop obtained from pressure drop/dust load dependence using a curve fit. Exponential and polynomial fitting was used and compared. Pressure drop in relation to the dust load followed different trends depending on the experimental conditions and inner fiber diameter. At higher flowrate, the dependence was polynomial no matter what the fiber diameter. However, with higher fiber diameter at lower permeate velocities, the dependence was close to exponential curve and followed similar trends as observed in planar filter media. Dust-holding capacity of the membranes depended on the experimental conditions and was up to 21.4 g. However, higher dust holding capacity was impossible to reach no matter the experiment duration due to self-cleaning ability of the tested membranes.
Zobrazit více v PubMed
Chen J., Brager G.S., Augenbroe G., Song X. Impact of Outdoor Air Quality on the Natural Ventilation Usage of Commercial Buildings in the US. Appl. Energy. 2019;235:673–684. doi: 10.1016/j.apenergy.2018.11.020. DOI
Yu B.F., Hu Z.B., Liu M., Yang H.L., Kong Q.X., Liu Y.H. Review of Research on Air-Conditioning Systems and Indoor Air Quality Control for Human Health. Int. J. Refrig. 2009;32:3–20. doi: 10.1016/j.ijrefrig.2008.05.004. DOI
Bulejko P. An Analysis on Energy Demands in Airborne Particulate Matter Filtration Using Hollow-Fiber Membranes. Energy Rep. 2021;7:2727–2736. doi: 10.1016/j.egyr.2021.05.005. DOI
Leung W.W.-F., Hau C.W.-Y. A Model of Backpulse and Backblow Cleaning of Nanofiber Filter Loaded with Nano-Aerosols. Sep. Purif. Technol. 2016;169:171–178. doi: 10.1016/j.seppur.2016.06.007. PubMed DOI PMC
Leung W.W.-F., Hau C.W.Y. Skin Layer in Cyclic Loading-Cleaning of a Nanofiber Filter in Filtering Nano-Aerosols. Sep. Purif. Technol. 2017;188:367–378. doi: 10.1016/j.seppur.2017.07.043. PubMed DOI PMC
Bulejko P., Krištof O., Dohnal M., Svěrák T. Fine/Ultrafine Particle Air Filtration and Aerosol Loading of Hollow-Fiber Membranes: A Comparison of Mathematical Models for the Most Penetrating Particle Size and Dimensionless Permeability with Experimental Data. J. Membr. Sci. 2019;592:117393. doi: 10.1016/j.memsci.2019.117393. DOI
Bulejko P. Numerical Comparison of Prediction Models for Aerosol Filtration Efficiency Applied on a Hollow-Fiber Membrane Pore Structure. Nanomaterials. 2018;8:447. doi: 10.3390/nano8060447. PubMed DOI PMC
Wang L.-Y., Yu L.E., Chung T.-S. Effects of Relative Humidity, Particle Hygroscopicity, and Filter Hydrophilicity on Filtration Performance of Hollow Fiber Air Filters. J. Membr. Sci. 2020;595:117561. doi: 10.1016/j.memsci.2019.117561. DOI
Bulejko P., Krištof O., Svěrák T. Experimental and Modeling Study on Fouling of Hollow-Fiber Membranes by Fine Dust Aerosol Particles. J. Membr. Sci. 2020;616:118562. doi: 10.1016/j.memsci.2020.118562. DOI
Bulejko P., Svěrák T., Dohnal M., Pospíšil J. Aerosol Filtration Using Hollow-Fiber Membranes: Effect of Permeate Velocity and Dust Amount on Separation of Submicron TiO2 Particles. Powder Technol. 2018;340:344–353. doi: 10.1016/j.powtec.2018.09.040. DOI
Xu H., Jin W., Wang F., Li C., Wang J., Zhu H., Guo Y. Preparation and Properties of PTFE Hollow Fiber Membranes for the Removal of Ultrafine Particles in PM2.5 with Repetitive Usage Capability. RSC Adv. 2018;8:38245–38258. doi: 10.1039/C8RA07789D. PubMed DOI PMC
Sun C., Woodman D. Delivering Sustainability Promise to HVAC Air Filtration-Part I: Classification of Energy Efficiency for Air Filters. ASHRAE Trans. 2009;115:581–585.
Eurovent 4/21—2014: Calculation Method for the Energy Use Related to Air Filters in General Ventilation Systems—First Edition | Eurovent. [(accessed on 11 November 2020)]; Available online: https://eurovent.eu/?q=content/eurovent-421-2014-calculation-method-energy-use-related-air-filters-general-ventilation.
Zhang W., Deng S., Wang Y., Lin Z. Dust Loading Performance of the PTFE HEPA Media and Its Comparison with the Glass Fibre HEPA Media. Aerosol Air Qual. Res. 2018;18:1921–1931. doi: 10.4209/aaqr.2017.11.0481. DOI
Long J., Tang M., Sun Z., Liang Y., Hu J. Dust Loading Performance of a Novel Submicro-Fiber Composite Filter Medium for Engine. Materials. 2018;11:2038. doi: 10.3390/ma11102038. PubMed DOI PMC
Sun C. Delivering Sustainability Promise to HVAC Air Filtration: Part II: Life Cycle Sustainability of Air Filters. ASHRAE Trans. 2010;116:25–32.
Montgomery J.F., Green S.I., Rogak S.N., Bartlett K. Predicting the Energy Use and Operation Cost of HVAC Air Filters. Energy Build. 2012;47:643–650. doi: 10.1016/j.enbuild.2012.01.001. DOI
Zena Membranes s.r.O. [(accessed on 14 May 2021)]; Available online: www.zena-membranes.cz/
Sverak T., Bulejko P., Ostrezi J., Kristof O., Kalivoda J., Kejik P., Mayerova K., Adamcik M. Separation of Gaseous Air Pollutants Using Membrane Contactors. IOP Conf. Ser. Earth Environ. Sci. 2017;92:012061. doi: 10.1088/1755-1315/92/1/012061. DOI
Kůdelová T., Bartuli E., Strunga A., Hvožďa J., Dohnal M. Fully Polymeric Distillation Unit Based on Polypropylene Hollow Fibers. Polymers. 2021;13:1031. doi: 10.3390/polym13071031. PubMed DOI PMC
ASHRAE 52.2-2017 . Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size. ASHRAE; Peachtree Corners, GA, USA: 2017. (ANSI Approved)
Bulejko P., Dohnal M., Pospíšil J., Svěrák T. Air Filtration Performance of Symmetric Polypropylene Hollow-Fibre Membranes for Nanoparticle Removal. Sep. Purif. Technol. 2018;197:122–128. doi: 10.1016/j.seppur.2017.12.056. DOI
Zhang X., Liu J., Liu X., Liu C. Performance Optimization of Airliner Cabin Air Filters. Build. Environ. 2021;187:107392. doi: 10.1016/j.buildenv.2020.107392. DOI
Banik R., Das P., Ray S., Biswas A. Prediction of Electrical Energy Consumption Based on Machine Learning Technique. Electr. Eng. 2020 doi: 10.1007/s00202-020-01126-z. DOI
Maduna L., Patnaik A. Textiles in Air Filtration. Text. Prog. 2017;49:173–247. doi: 10.1080/00405167.2018.1461921. DOI
Azimi P., Stephens B. HVAC Filtration for Controlling Infectious Airborne Disease Transmission in Indoor Environments: Predicting Risk Reductions and Operational Costs. Build. Environ. 2013;70:150–160. doi: 10.1016/j.buildenv.2013.08.025. PubMed DOI PMC
Tian X., Ou Q., Liu J., Liang Y., Pui D.Y.H. Influence of Pre-Stage Filter Selection and Face Velocity on the Loading Characteristics of a Two-Stage Filtration System. Sep. Purif. Technol. 2019;224:227–236. doi: 10.1016/j.seppur.2019.05.031. DOI
Walsh D.C. Possibilities for the Design of Fibrous Filter Materials with Enhanced Dust Holding Capacity. J. Aerosol Sci. 1998;29:S939–S940. doi: 10.1016/S0021-8502(98)90652-8. DOI
Chang D.-Q., Tien C.-Y., Peng C.-Y., Tang M., Chen S.-C. Development of Composite Filters with High Efficiency, Low Pressure Drop, and High Holding Capacity PM2.5 Filtration. Sep. Purif. Technol. 2019;212:699–708. doi: 10.1016/j.seppur.2018.11.068. DOI
Rebai M., Prat M., Meireles M., Schmitz P., Baclet R. Clogging Modeling in Pleated Filters for Gas Filtration. Chem. Eng. Res. Des. 2010;88:476–486. doi: 10.1016/j.cherd.2009.08.014. DOI
Shao P., Huang R.Y.M. An Analytical Approach to the Gas Pressure Drop in Hollow Fiber Membranes. J. Membr. Sci. 2006;271:69–76. doi: 10.1016/j.memsci.2005.06.058. DOI
Tang M., Chen S.-C., Chang D.-Q., Xie X., Sun J., Pui D.Y.H. Filtration Efficiency and Loading Characteristics of PM2.5 through Composite Filter Media Consisting of Commercial HVAC Electret Media and Nanofiber Layer. Sep. Purif. Technol. 2018;198:137–145. doi: 10.1016/j.seppur.2017.03.040. DOI