Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30575734
PubMed Central
PMC6303319
DOI
10.1038/s41467-018-07866-8
PII: 10.1038/s41467-018-07866-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We provide a vivid demonstration of the mechanical effect of transverse spin momentum in an optical beam in free space. This component of the Poynting momentum was previously thought to be virtual, and unmeasurable. Here, its effect is revealed in the inertial motion of a probe particle in a circularly polarized Gaussian trap, in vacuum. Transverse spin forces combine with thermal fluctuations to induce a striking range of non-equilibrium phenomena. With increasing beam power we observe (i) growing departures from energy equipartition, (ii) the formation of coherent, thermally excited orbits and, ultimately, (iii) the ejection of the particle from the trap. As well as corroborating existing measurements of spin momentum, our results reveal its dynamic effect. We show how the under-damped motion of probe particles in structured light fields can expose the nature and morphology of optical momentum flows, and provide a testbed for elementary non-equilibrium statistical mechanics.
Zobrazit více v PubMed
Pfeifer RNC, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Colloquium: momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 2007;79:1197–2016. doi: 10.1103/RevModPhys.79.1197. DOI
Berry MV. Optical currents. J. Opt. A. 2009;11:094001. doi: 10.1088/1464-4258/11/9/094001. DOI
Bekshaev A, Bliokh KY, Soskin M. Internal flows and energy circulation in light beams. J. Opt. 2011;13:053001. doi: 10.1088/2040-8978/13/5/053001. DOI
Neugebauer M, Bauer T, Aiello A, Banzer P. Measuring the transverse spin density of light. Phys. Rev. Lett. 2015;114:063901. doi: 10.1103/PhysRevLett.114.063901. PubMed DOI
Antognozzi M, et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys. 2016;12:731–735. doi: 10.1038/nphys3732. DOI
Bliokh KY, Bekshaev AY, Nori F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 2014;5:3300. doi: 10.1038/ncomms4300. PubMed DOI
Liu L, et al. Three-dimensional measurement of the helicity-dependent forces on a Mie particle. Phys. Rev. Lett. 2018;120:223901. doi: 10.1103/PhysRevLett.120.223901. PubMed DOI
Bliokh KY, Bekshaev AY, Nori F. Dual electromagnetism: helicity, spin, momentum, and angular momentum. New J. Phys. 2013;15:033026. doi: 10.1088/1367-2630/15/3/033026. DOI
Bliokh KY, et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express. 2011;19:26132–26149. doi: 10.1364/OE.19.026132. PubMed DOI
Jackson, J. Classical Electrodynamics: Third Edition (Cambridge university press, 1999).
Soper, D. Classical Field Theory (Dover Publications Inc., 2008).
Angelsky OV, et al. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Opt. Express. 2012;20:3563–3571. doi: 10.1364/OE.20.003563. PubMed DOI
Ruffner DB, Grier DG. Optical forces and torques in nonuniform beams of light. Phys. Rev. Lett. 2012;108:173602. doi: 10.1103/PhysRevLett.108.173602. PubMed DOI
Sukhov S, Kajorndejnukul V, Naraghi RR, Dogariu A. Dynamic consequences of optical spin-orbit interaction. Nat. Photon. 2015;9:809–812. doi: 10.1038/nphoton.2015.200. DOI
Rodriguez-Fortuno FJ, Engheta N, Martinez A, Zayats AV. Lateral forces on circularly polarizable particles near a surface. Nat. Commun. 2015;6:8799. doi: 10.1038/ncomms9799. PubMed DOI PMC
Wang SB, Chan CT. Lateral optical force on chiral particles near a surface. Nat. Commun. 2014;5:3307. doi: 10.1038/ncomms4307. PubMed DOI PMC
Magallanes H, Brasselet E. Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques. Nat. Photon. 2018;12:461–464. doi: 10.1038/s41566-018-0200-x. DOI
Li T, Kheifets S, Raizen MG. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 2011;7:527–530. doi: 10.1038/nphys1952. DOI
Chan J, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature. 2011;478:89–92. doi: 10.1038/nature10461. PubMed DOI
Millen J, Fonseca PZG, Mavrogordatos T, Monteiro TS, Barker PF. Cavity cooling a single charged levitated nanosphere. Phys. Rev. Lett. 2015;114:123602. doi: 10.1103/PhysRevLett.114.123602. PubMed DOI
Gieseler J, Spasenovic M, Novotny L, Quidant R. Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle. Phys. Rev. Lett. 2014;112:103603. doi: 10.1103/PhysRevLett.112.103603. PubMed DOI
Arita Y, Mazilu M, Dholakia K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 2013;4:2374. doi: 10.1038/ncomms3374. PubMed DOI PMC
Rondin, L. et al. Direct measurement of Kramers turnover with a levitated nanoparticle. Nat. Nanotech. 12, 1130–1133 (2017). PubMed
Millen J, Deesuwan T, Barker P, Anders J. Nanoscale temperature measurements using non-equilibrium brownian dynamics of a levitated nanosphere. Nat. Nanotech. 2014;9:425–429. doi: 10.1038/nnano.2014.82. PubMed DOI
Gieseler J, Quidant R, Dellago C, Novothy L. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotech. 2014;9:358–364. doi: 10.1038/nnano.2014.40. PubMed DOI
Divitt S, Rondin L, Novotny L. Cancellation of non-conservative scattering forces in optical traps by counter-propagating beams. Opt. Lett. 2015;40:1900–1903. doi: 10.1364/OL.40.001900. PubMed DOI
Nieminen TA, Stilgoe AB, Heckenberg NR, Rubinsztein-Dunlop H. Angular momentum of a strongly focused Gaussian beam. J. Opt. A. 2008;10:115005. doi: 10.1088/1464-4258/10/11/115005. DOI
Xiao G, Yang K, Luo H, Chen X, Xiong W. Orbital rotation of trapped particle in a transversely misaligned dual-fiber optical trap. IEEE Phot. J. 2016;8:6100108.
Simpson SH, Hanna S. First-order nonconservative motion of optically trapped nonspherical particles. Phys. Rev. E. 2010;82:031141. doi: 10.1103/PhysRevE.82.031141. PubMed DOI
Irrera A, et al. Photonic torque microscopy of the nonconservative force field for optically trapped silicon nanowires. Nano. Lett. 2016;16:4181–4188. doi: 10.1021/acs.nanolett.6b01059. PubMed DOI
Berry MV, Shukla P. Physical curl forces: dipole dynamics near optical vortices. J. Phys. A. 2013;46:422001. doi: 10.1088/1751-8113/46/42/422001. DOI
Berry MV, Shukla P. Curl force dynamics: Symmetries, chaos and constants of motion. New J. Phys. 2016;18:063018. doi: 10.1088/1367-2630/18/6/063018. DOI
Pralle A, Prummer M, Florin E, Stelzer E, Hörber J. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 1999;44:378–386. doi: 10.1002/(SICI)1097-0029(19990301)44:5<378::AID-JEMT10>3.0.CO;2-Z. PubMed DOI
Cheezum MK, Walker WF, Guilford WH. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 2001;81:2378–2388. doi: 10.1016/S0006-3495(01)75884-5. PubMed DOI PMC
Synchronization of spin-driven limit cycle oscillators optically levitated in vacuum