Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap

. 2018 Dec 21 ; 9 (1) : 5453. [epub] 20181221

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30575734
Odkazy

PubMed 30575734
PubMed Central PMC6303319
DOI 10.1038/s41467-018-07866-8
PII: 10.1038/s41467-018-07866-8
Knihovny.cz E-zdroje

We provide a vivid demonstration of the mechanical effect of transverse spin momentum in an optical beam in free space. This component of the Poynting momentum was previously thought to be virtual, and unmeasurable. Here, its effect is revealed in the inertial motion of a probe particle in a circularly polarized Gaussian trap, in vacuum. Transverse spin forces combine with thermal fluctuations to induce a striking range of non-equilibrium phenomena. With increasing beam power we observe (i) growing departures from energy equipartition, (ii) the formation of coherent, thermally excited orbits and, ultimately, (iii) the ejection of the particle from the trap. As well as corroborating existing measurements of spin momentum, our results reveal its dynamic effect. We show how the under-damped motion of probe particles in structured light fields can expose the nature and morphology of optical momentum flows, and provide a testbed for elementary non-equilibrium statistical mechanics.

Zobrazit více v PubMed

Pfeifer RNC, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Colloquium: momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 2007;79:1197–2016. doi: 10.1103/RevModPhys.79.1197. DOI

Berry MV. Optical currents. J. Opt. A. 2009;11:094001. doi: 10.1088/1464-4258/11/9/094001. DOI

Bekshaev A, Bliokh KY, Soskin M. Internal flows and energy circulation in light beams. J. Opt. 2011;13:053001. doi: 10.1088/2040-8978/13/5/053001. DOI

Neugebauer M, Bauer T, Aiello A, Banzer P. Measuring the transverse spin density of light. Phys. Rev. Lett. 2015;114:063901. doi: 10.1103/PhysRevLett.114.063901. PubMed DOI

Antognozzi M, et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys. 2016;12:731–735. doi: 10.1038/nphys3732. DOI

Bliokh KY, Bekshaev AY, Nori F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 2014;5:3300. doi: 10.1038/ncomms4300. PubMed DOI

Liu L, et al. Three-dimensional measurement of the helicity-dependent forces on a Mie particle. Phys. Rev. Lett. 2018;120:223901. doi: 10.1103/PhysRevLett.120.223901. PubMed DOI

Bliokh KY, Bekshaev AY, Nori F. Dual electromagnetism: helicity, spin, momentum, and angular momentum. New J. Phys. 2013;15:033026. doi: 10.1088/1367-2630/15/3/033026. DOI

Bliokh KY, et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express. 2011;19:26132–26149. doi: 10.1364/OE.19.026132. PubMed DOI

Jackson, J. Classical Electrodynamics: Third Edition (Cambridge university press, 1999).

Soper, D. Classical Field Theory (Dover Publications Inc., 2008).

Angelsky OV, et al. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Opt. Express. 2012;20:3563–3571. doi: 10.1364/OE.20.003563. PubMed DOI

Ruffner DB, Grier DG. Optical forces and torques in nonuniform beams of light. Phys. Rev. Lett. 2012;108:173602. doi: 10.1103/PhysRevLett.108.173602. PubMed DOI

Sukhov S, Kajorndejnukul V, Naraghi RR, Dogariu A. Dynamic consequences of optical spin-orbit interaction. Nat. Photon. 2015;9:809–812. doi: 10.1038/nphoton.2015.200. DOI

Rodriguez-Fortuno FJ, Engheta N, Martinez A, Zayats AV. Lateral forces on circularly polarizable particles near a surface. Nat. Commun. 2015;6:8799. doi: 10.1038/ncomms9799. PubMed DOI PMC

Wang SB, Chan CT. Lateral optical force on chiral particles near a surface. Nat. Commun. 2014;5:3307. doi: 10.1038/ncomms4307. PubMed DOI PMC

Magallanes H, Brasselet E. Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques. Nat. Photon. 2018;12:461–464. doi: 10.1038/s41566-018-0200-x. DOI

Li T, Kheifets S, Raizen MG. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 2011;7:527–530. doi: 10.1038/nphys1952. DOI

Chan J, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature. 2011;478:89–92. doi: 10.1038/nature10461. PubMed DOI

Millen J, Fonseca PZG, Mavrogordatos T, Monteiro TS, Barker PF. Cavity cooling a single charged levitated nanosphere. Phys. Rev. Lett. 2015;114:123602. doi: 10.1103/PhysRevLett.114.123602. PubMed DOI

Gieseler J, Spasenovic M, Novotny L, Quidant R. Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle. Phys. Rev. Lett. 2014;112:103603. doi: 10.1103/PhysRevLett.112.103603. PubMed DOI

Arita Y, Mazilu M, Dholakia K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 2013;4:2374. doi: 10.1038/ncomms3374. PubMed DOI PMC

Rondin, L. et al. Direct measurement of Kramers turnover with a levitated nanoparticle. Nat. Nanotech. 12, 1130–1133 (2017). PubMed

Millen J, Deesuwan T, Barker P, Anders J. Nanoscale temperature measurements using non-equilibrium brownian dynamics of a levitated nanosphere. Nat. Nanotech. 2014;9:425–429. doi: 10.1038/nnano.2014.82. PubMed DOI

Gieseler J, Quidant R, Dellago C, Novothy L. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotech. 2014;9:358–364. doi: 10.1038/nnano.2014.40. PubMed DOI

Divitt S, Rondin L, Novotny L. Cancellation of non-conservative scattering forces in optical traps by counter-propagating beams. Opt. Lett. 2015;40:1900–1903. doi: 10.1364/OL.40.001900. PubMed DOI

Nieminen TA, Stilgoe AB, Heckenberg NR, Rubinsztein-Dunlop H. Angular momentum of a strongly focused Gaussian beam. J. Opt. A. 2008;10:115005. doi: 10.1088/1464-4258/10/11/115005. DOI

Xiao G, Yang K, Luo H, Chen X, Xiong W. Orbital rotation of trapped particle in a transversely misaligned dual-fiber optical trap. IEEE Phot. J. 2016;8:6100108.

Simpson SH, Hanna S. First-order nonconservative motion of optically trapped nonspherical particles. Phys. Rev. E. 2010;82:031141. doi: 10.1103/PhysRevE.82.031141. PubMed DOI

Irrera A, et al. Photonic torque microscopy of the nonconservative force field for optically trapped silicon nanowires. Nano. Lett. 2016;16:4181–4188. doi: 10.1021/acs.nanolett.6b01059. PubMed DOI

Berry MV, Shukla P. Physical curl forces: dipole dynamics near optical vortices. J. Phys. A. 2013;46:422001. doi: 10.1088/1751-8113/46/42/422001. DOI

Berry MV, Shukla P. Curl force dynamics: Symmetries, chaos and constants of motion. New J. Phys. 2016;18:063018. doi: 10.1088/1367-2630/18/6/063018. DOI

Pralle A, Prummer M, Florin E, Stelzer E, Hörber J. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 1999;44:378–386. doi: 10.1002/(SICI)1097-0029(19990301)44:5<378::AID-JEMT10>3.0.CO;2-Z. PubMed DOI

Cheezum MK, Walker WF, Guilford WH. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 2001;81:2378–2388. doi: 10.1016/S0006-3495(01)75884-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...