Synchronization of spin-driven limit cycle oscillators optically levitated in vacuum
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
37673926
PubMed Central
PMC10482900
DOI
10.1038/s41467-023-41129-5
PII: 10.1038/s41467-023-41129-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We explore, experimentally and theoretically, the emergence of coherent coupled oscillations and synchronization between a pair of non-Hermitian, stochastic, opto-mechanical oscillators, levitated in vacuum. Each oscillator consists of a polystyrene microsphere trapped in a circularly polarized, counter-propagating Gaussian laser beam. Non-conservative, azimuthal forces, deriving from inhomogeneous optical spin, push the micro-particles out of thermodynamic equilibrium. For modest optical powers each particle shows a tendency towards orbital circulation. Initially, their stochastic motion is weakly correlated. As the power is increased, the tendency towards orbital circulation strengthens and the motion of the particles becomes highly correlated. Eventually, centripetal forces overcome optical gradient forces and the oscillators undergo a collective Hopf bifurcation. For laser powers exceeding this threshold, a pair of limit cycles appear, which synchronize due to weak optical and hydrodynamic interactions. In principle, arrays of such Non-Hermitian elements can be arranged, paving the way for opto-mechanical topological materials or, possibly, classical time crystals. In addition, the preparation of synchronized states in levitated optomechanics could lead to new and robust sensors or alternative routes to the entanglement of macroscopic objects.
Zobrazit více v PubMed
Millen J, Stickler BA. Quantum experiments with microscale particles. Contemp. Phys. 2020;61:155–168.
Konopik M, Friedenberger A, Kiesel N, Lutz E. Nonequilibrium information erasure below ktln2. Europhys. Lett. 2020;131:60004.
Dholakia K, Zemánek P. Gripped by light: optical binding. Rev. Mod. Phys. 2010;82:1767–1791.
Tebbenjohanns F, Frimmer M, Militaru A, Jain V, Novotny L. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Phys. Rev. Lett. 2019;122:223601. PubMed
Chang DE, et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA. 2010;107:1005–1010. PubMed PMC
Gonzalez-Ballestero C, Aspelmeyer M, Novotny L, Quidant R, Romero-Isart O. Levitodynamics: Levitation and control of microscopic objects in vacuum. Science. 2021;374:eabg3027. PubMed
Delić U, et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science. 2020;367:892–895. PubMed
Piotrowski, J. et al. Simultaneous ground-state cooling of two mechanical modes of a levitated nanoparticle. Nat. Phys.19, 1009–1013 (2023).
Arita Y, et al. All-optical sub-kelvin sympathetic cooling of a levitated microsphere in vacuum. Optica. 2022;9:1000–1002.
Liu J-Y, et al. Ground-state cooling of multiple near-degenerate mechanical modes. Phys. Rev. A. 2022;105:053518. PubMed
Chauhan AK, Černotík O, Filip R. Stationary gaussian entanglement between levitated nanoparticles. N. J. Phys. 2020;22:123021.
Rudolph H, Hornberger K, Stickler BA. Entangling levitated nanoparticles by coherent scattering. Phys. Rev. A. 2020;101:011804.
Rudolph H, Delić U, Aspelmeyer M, Hornberger K, Stickler BA. Force-gradient sensing and entanglement via feedback cooling of interacting nanoparticles. Phys. Rev. Lett. 2022;129:193602. PubMed
Monteiro F, et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Phys. Rev. A. 2020;101:053835.
Hempston D, et al. Force sensing with an optically levitated charged nanoparticle. Appl. Phys. Lett. 2017;111:133111.
Sukhov S, Shalin A, Haefner D, Dogariu A. Actio et reactio in optical binding. Opt. Express. 2015;23:247–252. PubMed
Roichman Y, Sun B, Stolarski A, Grier DG. Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability. Phys. Rev. Lett. 2008;101:128301. PubMed
Simpson SH, Hanna S. First-order nonconservative motion of optically trapped nonspherical particles. Phys. Rev. E. 2010;82:031141. PubMed
Sukhov S, Dogariu A. Non-conservative optical forces. Rep. Prog. Phys. 2017;80:112001. PubMed
Woerdemann M, Alpmann C, Esseling M, Denz C. Advanced optical trapping by complex beam shaping. Laser Photonics Rev. 2013;7:839–854.
Zupancic P, et al. Ultra-precise holographic beam shaping for microscopic quantum control. Opt. Express. 2016;24:13881–13893. PubMed
Gang H, Ditzinger T, Ning C-Z, Haken H. Stochastic resonance without external periodic force. Phys. Rev. Lett. 1993;71:807. PubMed
Pikovsky AS, Kurths J. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 1997;78:775.
Tanabe S, Pakdaman K. Dynamics of moments of fitzhugh-nagumo neuronal models and stochastic bifurcations. Phys. Rev. E. 2001;63:031911. PubMed
Moss F, Ward LM, Sannita WG. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol. 2004;115:267–281. PubMed
Laing, C. & Lord, G. J.Stochastic Methods in Neuroscience (OUP Oxford, 2009).
Acebrón JA, Bonilla LL, Vicente CJP, Ritort F, Spigler R. The kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005;77:137.
Gupta, S., Campa, A. & Ruffo, S. Statistical Physics of Synchronization, vol. 48 (Springer, 2018).
Elgeti J, Winkler RG, Gompper G. Physics of microswimmers–single particle motion and collective behavior: a review. Rep. Prog. Phys. 2015;78:056601. PubMed
Kotar J, et al. Optimal hydrodynamic synchronization of colloidal rotors. Phys. Rev. Lett. 2013;111:228103. PubMed
Maestro A, et al. Control of synchronization in models of hydrodynamically coupled motile cilia. Commun. Phys. 2018;1:28.
Lee S, Hyeon C, Jo J. Thermodynamic uncertainty relation of interacting oscillators in synchrony. Phys. Rev. E. 2018;98:032119.
Afek G, Carney D, Moore DC. Coherent scattering of low mass dark matter from optically trapped sensors. Phys. Rev. Lett. 2022;128:101301. PubMed
Matheny MH, et al. Phase synchronization of two anharmonic nanomechanical oscillators. Phys. Rev. Lett. 2014;112:014101. PubMed
Zhang M, Shah S, Cardenas J, Lipson M. Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light. Phys. Rev. Lett. 2015;115:163902. PubMed
Xin L, Siyuan Y, Harry L, Minghui L, Yanfeng C. Topological mechanical metamaterials: a brief review. Curr. Opin. Solid State Mater. Sci. 2020;24:100853.
Bergholtz EJ, Budich JC, Kunst FK. Exceptional topology of non-hermitian systems. Rev. Mod. Phys. 2021;93:015005.
McDonald A, Clerk AA. Exponentially-enhanced quantum sensing with non-hermitian lattice dynamics. Nat. Commun. 2020;11:5382. PubMed PMC
Okuma N, Kawabata K, Shiozaki K, Sato M. Topological origin of non-hermitian skin effects. Phys. Rev. Lett. 2020;124:086801. PubMed
Budich JC, Bergholtz EJ. Non-hermitian topological sensors. Phys. Rev. Lett. 2020;125:180403. PubMed
Brandenbourger M, Locsin X, Lerner E, Coulais C. Non-reciprocal robotic metamaterials. Nat. Commun. 2019;10:4608. PubMed PMC
Fruchart M, Hanai R, Littlewood PB, Vitelli V. Non-reciprocal phase transitions. Nature. 2021;592:363–369. PubMed
Yao NY, Nayak C, Balents L, Zaletel MP. Classical discrete time crystals. Nat. Phys. 2020;16:438–447.
Shapere A, Wilczek F. Classical time crystals. Phys. Rev. Lett. 2012;109:160402. PubMed
Arita, Y. et al. Cooling the optical-spin driven limit cycle oscillations of a levitated gyroscope. Commun. Phys.6, 1 (2023).
Liska, V. et al. Cold damping of levitated optically coupled nanoparticles. Preprint at http://arxiv.org/abs/2305.11809 (2023).
Roulet A, Bruder C. Quantum synchronization and entanglement generation. Phys. Rev. Lett. 2018;121:063601. PubMed
Witthaut D, Wimberger S, Burioni R, Timme M. Classical synchronization indicates persistent entanglement in isolated quantum systems. Nat. Commun. 2017;8:1–7. PubMed PMC
Antognozzi M, et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Nat. Phys. 2016;12:731–735.
Bliokh KY, Bekshaev AY, Nori F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 2014;5:1–8. PubMed
Svak V, et al. Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap. Nat. Commun. 2018;9:1–8. PubMed PMC
Arita Y, Simpson SH, Zemánek P, Dholakia K. Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. Sci. Adv. 2020;6:eaaz9858. PubMed PMC
Rieser J, et al. Tunable light-induced dipole-dipole interaction between optically levitated nanoparticles. Science. 2022;377:987–990. PubMed
Simpson SH, Hanna S. Numerical calculation of interparticle forces arising in association with holographic assembly. J. Opt. Soc. Am. A. 2006;23:1419–1431. PubMed
Simpson SH, Arita Y, Dholakia K, Zemánek P. Stochastic hopf bifurcations in vacuum optical tweezers. Phys. Rev. A. 2021;104:043518.
Beresnev S, Chernyak V, Fomyagin G. Motion of a spherical particle in a rarefied gas. part 2. drag and thermal polarization. J. Fluid Mech. 1990;219:405–421.
Bekshaev A, Bliokh KY, Soskin M. Internal flows and energy circulation in light beams. J. Opt. 2011;13:053001.
Plemmons, R. J. Matrix analysis (roger a. horn and charles r. johnson) (1988).
Jones P, et al. Rotation detection in light-driven nanorotors. ACS Nano. 2009;3:3077. PubMed
Tass P, et al. Detection of n: m phase locking from noisy data: application to magnetoencephalography. Phys. Rev. Lett. 1998;81:3291–3294.
Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: a universal concept in nonlinear science (2002).
Svak V, et al. Stochastic dynamics of optically bound matter levitated in vacuum. Optica. 2021;8:220–229.
Rondin L, et al. Direct measurement of kramers turnover with a levitated nanoparticle. Nat. Nanotechnol. 2017;12:1130–1133. PubMed
Mel’nikov VI. The kramers problem: fifty years of development. Phys. Rep. 1991;209:1–71.
Jung P, Risken H. Eigenvalues for the extremely underdamped brownian motion in an inclined periodic potential. Z. Phys. B Con. Mat. 1984;54:357–370.
Vollmer H, Risken H. Eigenvalues and their connection to transition rates for the brownian motion in an inclined cosine potential. Z. Phys. B. Cond. Mat. 1983;52:259–266.
Onsager L. Reciprocal relations in irreversible processes. ii. Phys. Rev. 1931;38:2265.
Tatarkova SA, Carruthers AE, Dholakia K. One-dimensional optically bound arrays of microscopic particles. Phys. Rev. Lett. 2002;89:283901. PubMed
Leite IT, et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat. Photon. 2018;12:33–39.