• This record comes from PubMed

Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling

. 2020 Jun ; 6 (23) : eaaz9858. [epub] 20200603

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

We demonstrate an effect whereby stochastic, thermal fluctuations combine with nonconservative optical forces to break detailed balance and produce increasingly coherent, apparently deterministic motion for a vacuum-trapped particle. The particle is birefringent and held in a linearly polarized Gaussian optical trap. It undergoes oscillations that grow rapidly in amplitude as the air pressure is reduced, seemingly in contradiction to the equipartition of energy. This behavior is reproduced in direct simulations and captured in a simplified analytical model, showing that the underlying mechanism involves nonsymmetric coupling between rotational and translational degrees of freedom. When parametrically driven, these self-sustained oscillators exhibit an ultranarrow linewidth of 2.2 μHz and an ultrahigh mechanical quality factor in excess of 2 × 108 at room temperature. Last, nonequilibrium motion is seen to be a generic feature of optical vacuum traps, arising for any system with symmetry lower than that of a perfect isotropic microsphere in a Gaussian trap.

See more in PubMed

Martínez I. A., Roldán E., Dinis L., Rica R. A., Colloidal heat engines: A review. Soft Matter 13, 22–36 (2017). PubMed

Hänggi P., Marchesoni F., Nori F., Brownian motors. Ann. Phys. 14, 51–70 (2005).

Howard J., Molecular motors: Structural adaptations to cellular functions. Nature 389, 561–567 (1997). PubMed

Zemánek P., Volpe G., Jonáš A., Brzobohatý O., Perspective on light-induced transport of particles: From optical forces to phoretic motion. Adv. Opt. Photonics 11, 577–678 (2019).

Faucheux L. P., Bourdieu L. S., Kaplan P. D., Libchaber A. J., Optical thermal ratchet. Phys. Rev. Lett. 74, 1504–1507 (1995). PubMed

Sukhov S., Dogariu A., Non-conservative optical forces. Rep. Prog. Phys. 80, 112001 (2017). PubMed

Roichman Y., Sun B., Stolarski A., Grier D. G., Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: The fountain of probability. Phys. Rev. Lett. 101, 128301 (2008). PubMed

Simpson S. H., Hanna S., First-order nonconservative motion of optically trapped nonspherical particles. Phys. Rev. E 82, 031141 (2010). PubMed

Irrera A., Magazzú A., Artoni P., Simpson S. H., Hanna S., Jones P. H., Priolo F., Gucciardi P. G., Maragó O. M., Photonic torque microscopy of the nonconservative force field for optically trapped silicon nanowires. Nano Lett. 16, 4181–4188 (2016). PubMed

Toe W. J., Ortega-Piwonka I., Angstmann C. N., Gao Q., Tan H. H., Jagadish C., Henry B. I., Reece P. J., Nonconservative dynamics of optically trapped high-aspect-ratio nanowires. Phys. Rev. E 93, 022137 (2016). PubMed

Gibson G. M., Leach J., Keen S., Wright A. J., Padgett M. J., Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. Opt. Express 16, 14561–14570 (2008). PubMed

Li T. C., Kheifets S., Medellin D., Raizen M. G., Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673–1675 (2010). PubMed

Simpson S. H., Hanna S., Thermal motion of a holographically trapped SPM-like probe. Nanotechnology 20, 395710 (2009). PubMed

Ahn J., Xu Z., Bang J., Ju P., Gao X., Li T., Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol. 15, 89–93 (2020). PubMed

Kuhn S., Stickler B. A., Kosloff A., Patolsky F., Hornberger K., Arndt M., Millen J., Optically driven ultra-stable nanomechanical rotor. Nat. Commun. 8, 1670 (2017). PubMed PMC

A. Pontin, N. Bullier, M. Toroš, P. Barker, An ultra-narrow line width levitated nano-oscillator for testing dissipative wavefunction collapse. arXiv:1907.06046 (2019).

Chang D. E., Regal C., Papp S. B., Wilson D., Ye J., Painter O., Kimble H. J., Zoller P., Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. U.S.A. 107, 1005–1010 (2010). PubMed PMC

Gieseler J., Novotny L., Quidant R., Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys. 9, 806–810 (2013).

Beresnev S., Chernyak V., Fomyagin G., Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization. J. Fluid Mech. 219, 405–421 (1990).

Chang D., Ni K., Painter O., Kimble H., Ultrahigh-Q mechanical oscillators through optical trapping. New J. Phys. 14, 045002 (2012).

A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, 2001).

Gieseler J., Spasenović M., Novotny L., Quidant R., Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle. Phys. Rev. Lett. 112, 103603 (2014). PubMed

Svak V., Brzobohatỳ O., Šiler M., Jákl P., Kaňka J., Zemánek P., Simpson S., Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap. Nat. Commun. 9, 5453 (2018). PubMed PMC

Simpson S. H., Hanna S., Peterson T. J., Swartzlander G. A., Optical lift from dielectric semicylinders. Opt. Lett. 37, 4038–4040 (2012). PubMed

Ilic O., Kaminer I., Zhen B., Miller O. D., Buljan H., Soljačić M., Topologically enabled optical nanomotors. Sci. Adv. 3, e1602738 (2017). PubMed PMC

Phillips D. B., Padgett M. J., Hanna S., Ho Y. L. D., Carberry D. M., Miles M. J., Simpson S. H., Shape-induced force fields in optical trapping. Nat. Photon. 8, 400–405 (2014).

Li X., Chen J., Lin Z., Ng J., Optical pulling at macroscopic distances. Sci. Adv. 5, eaau7814 (2019). PubMed PMC

O. N. Kirillov, Nonconservative Stability Problems of Modern Physics (De Gruyter, 2013).

Arita Y., Mazilu M., Dholakia K., Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013). PubMed PMC

Hoang T. M., Ma Y., Ahn J., Bang J., Robicheaux F., Yin Z. Q., Li T. C., Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett. 117, 123604 (2016). PubMed

Mazilu M., Arita Y., Vettenburg T., Auñón J. M., Wright E. M., Dholakia K., Orbital-angular-momentum transfer to optically levitated microparticles in vacuum. Phys. Rev. A 94, 053821 (2016).

Arita Y., Chen M., Wright E. M., Dholakia K., Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: Three-dimensional motion around a complex optical potential. J. Opt. Soc. Am. B 34, C14–C19 (2017).

Arita Y., Wright E. M., Dholakia K., Optical binding of two cooled micro-gyroscopes levitated in vacuum. Optica 5, 910–917 (2018).

Rondin L., Gieseler J., Ricci F., Quidant R., Dellago C., Novotny L., Direct measurement of Kramers turnover with a levitated nanoparticle. Nat. Nanotechnol. 12, 1130–1133 (2017). PubMed

Millen J., Deesuwan T., Barker P., Anders J., Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat. Nanotechnol. 9, 425–429 (2014). PubMed

Gieseler J., Quidant R., Dellago C., Novotny L., Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol. 9, 358–364 (2014). PubMed

Pettit R. M., Ge W., Kumar P., Luntz-Martin D. R., Schultz J. T., Neukirch L. P., Bhattacharya M., Vamivakas A. N., An optical tweezer phonon laser. Nat. Photon. 13, 402–405 (2019).

Parkin S. J., Vogel R., Persson M., Funk M., Loke V. L. Y., Nieminen T. A., Heckenberg N. R., Rubinsztein-Dunlop H., Highly birefringent vaterite microspheres: Production, characterization and applications for optical micromanipulation. Opt. Express 17, 21944–21955 (2009). PubMed

Grønbech-Jensen N., Farago O., A simple and effective Verlet-type algorithm for simulating Langevin dynamics. Mol. Phys. 111, 983–991 (2013).

Simpson S. H., Zemánek P., Maragò O. M., Jones P. H., Hanna S., Optical binding of nanowires. Nano Lett. 17, 3485–3492 (2017). PubMed

A. Doicu, T. Wreidt, Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

Simpson S. H., Hanna S., Optical angular momentum transfer by Laguerre-Gaussian beams. J. Opt. Soc. Am. A 26, 625–638 (2009). PubMed

L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).

Simpson S. H., Hanna S., Stability analysis and thermal motion of optically trapped nanowires. Nanotechnology 23, 205502 (2012). PubMed

Simpson S. H., Hanna S., Holographic optical trapping of microrods and nanowires. J. Opt. Soc. Am. A 27, 1255–1264 (2010). PubMed

Newest 20 citations...

See more in
Medvik | PubMed

Synchronization of spin-driven limit cycle oscillators optically levitated in vacuum

. 2023 Sep 06 ; 14 (1) : 5441. [epub] 20230906

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...