Coherent oscillations of a levitated birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
32537499
PubMed Central
PMC7269642
DOI
10.1126/sciadv.aaz9858
PII: aaz9858
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We demonstrate an effect whereby stochastic, thermal fluctuations combine with nonconservative optical forces to break detailed balance and produce increasingly coherent, apparently deterministic motion for a vacuum-trapped particle. The particle is birefringent and held in a linearly polarized Gaussian optical trap. It undergoes oscillations that grow rapidly in amplitude as the air pressure is reduced, seemingly in contradiction to the equipartition of energy. This behavior is reproduced in direct simulations and captured in a simplified analytical model, showing that the underlying mechanism involves nonsymmetric coupling between rotational and translational degrees of freedom. When parametrically driven, these self-sustained oscillators exhibit an ultranarrow linewidth of 2.2 μHz and an ultrahigh mechanical quality factor in excess of 2 × 108 at room temperature. Last, nonequilibrium motion is seen to be a generic feature of optical vacuum traps, arising for any system with symmetry lower than that of a perfect isotropic microsphere in a Gaussian trap.
College of Optical Sciences University of Arizona Tucson AZ 85721 0094 USA
Department of Physics College of Science Yonsei University Seoul 03722 South Korea
SUPA School of Physics and Astronomy University of St Andrews North Haugh St Andrews KY16 9SS UK
See more in PubMed
Martínez I. A., Roldán E., Dinis L., Rica R. A., Colloidal heat engines: A review. Soft Matter 13, 22–36 (2017). PubMed
Hänggi P., Marchesoni F., Nori F., Brownian motors. Ann. Phys. 14, 51–70 (2005).
Howard J., Molecular motors: Structural adaptations to cellular functions. Nature 389, 561–567 (1997). PubMed
Zemánek P., Volpe G., Jonáš A., Brzobohatý O., Perspective on light-induced transport of particles: From optical forces to phoretic motion. Adv. Opt. Photonics 11, 577–678 (2019).
Faucheux L. P., Bourdieu L. S., Kaplan P. D., Libchaber A. J., Optical thermal ratchet. Phys. Rev. Lett. 74, 1504–1507 (1995). PubMed
Sukhov S., Dogariu A., Non-conservative optical forces. Rep. Prog. Phys. 80, 112001 (2017). PubMed
Roichman Y., Sun B., Stolarski A., Grier D. G., Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: The fountain of probability. Phys. Rev. Lett. 101, 128301 (2008). PubMed
Simpson S. H., Hanna S., First-order nonconservative motion of optically trapped nonspherical particles. Phys. Rev. E 82, 031141 (2010). PubMed
Irrera A., Magazzú A., Artoni P., Simpson S. H., Hanna S., Jones P. H., Priolo F., Gucciardi P. G., Maragó O. M., Photonic torque microscopy of the nonconservative force field for optically trapped silicon nanowires. Nano Lett. 16, 4181–4188 (2016). PubMed
Toe W. J., Ortega-Piwonka I., Angstmann C. N., Gao Q., Tan H. H., Jagadish C., Henry B. I., Reece P. J., Nonconservative dynamics of optically trapped high-aspect-ratio nanowires. Phys. Rev. E 93, 022137 (2016). PubMed
Gibson G. M., Leach J., Keen S., Wright A. J., Padgett M. J., Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. Opt. Express 16, 14561–14570 (2008). PubMed
Li T. C., Kheifets S., Medellin D., Raizen M. G., Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673–1675 (2010). PubMed
Simpson S. H., Hanna S., Thermal motion of a holographically trapped SPM-like probe. Nanotechnology 20, 395710 (2009). PubMed
Ahn J., Xu Z., Bang J., Ju P., Gao X., Li T., Ultrasensitive torque detection with an optically levitated nanorotor. Nat. Nanotechnol. 15, 89–93 (2020). PubMed
Kuhn S., Stickler B. A., Kosloff A., Patolsky F., Hornberger K., Arndt M., Millen J., Optically driven ultra-stable nanomechanical rotor. Nat. Commun. 8, 1670 (2017). PubMed PMC
A. Pontin, N. Bullier, M. Toroš, P. Barker, An ultra-narrow line width levitated nano-oscillator for testing dissipative wavefunction collapse. arXiv:1907.06046 (2019).
Chang D. E., Regal C., Papp S. B., Wilson D., Ye J., Painter O., Kimble H. J., Zoller P., Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. U.S.A. 107, 1005–1010 (2010). PubMed PMC
Gieseler J., Novotny L., Quidant R., Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys. 9, 806–810 (2013).
Beresnev S., Chernyak V., Fomyagin G., Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization. J. Fluid Mech. 219, 405–421 (1990).
Chang D., Ni K., Painter O., Kimble H., Ultrahigh-Q mechanical oscillators through optical trapping. New J. Phys. 14, 045002 (2012).
A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, 2001).
Gieseler J., Spasenović M., Novotny L., Quidant R., Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle. Phys. Rev. Lett. 112, 103603 (2014). PubMed
Svak V., Brzobohatỳ O., Šiler M., Jákl P., Kaňka J., Zemánek P., Simpson S., Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap. Nat. Commun. 9, 5453 (2018). PubMed PMC
Simpson S. H., Hanna S., Peterson T. J., Swartzlander G. A., Optical lift from dielectric semicylinders. Opt. Lett. 37, 4038–4040 (2012). PubMed
Ilic O., Kaminer I., Zhen B., Miller O. D., Buljan H., Soljačić M., Topologically enabled optical nanomotors. Sci. Adv. 3, e1602738 (2017). PubMed PMC
Phillips D. B., Padgett M. J., Hanna S., Ho Y. L. D., Carberry D. M., Miles M. J., Simpson S. H., Shape-induced force fields in optical trapping. Nat. Photon. 8, 400–405 (2014).
Li X., Chen J., Lin Z., Ng J., Optical pulling at macroscopic distances. Sci. Adv. 5, eaau7814 (2019). PubMed PMC
O. N. Kirillov, Nonconservative Stability Problems of Modern Physics (De Gruyter, 2013).
Arita Y., Mazilu M., Dholakia K., Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013). PubMed PMC
Hoang T. M., Ma Y., Ahn J., Bang J., Robicheaux F., Yin Z. Q., Li T. C., Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett. 117, 123604 (2016). PubMed
Mazilu M., Arita Y., Vettenburg T., Auñón J. M., Wright E. M., Dholakia K., Orbital-angular-momentum transfer to optically levitated microparticles in vacuum. Phys. Rev. A 94, 053821 (2016).
Arita Y., Chen M., Wright E. M., Dholakia K., Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: Three-dimensional motion around a complex optical potential. J. Opt. Soc. Am. B 34, C14–C19 (2017).
Arita Y., Wright E. M., Dholakia K., Optical binding of two cooled micro-gyroscopes levitated in vacuum. Optica 5, 910–917 (2018).
Rondin L., Gieseler J., Ricci F., Quidant R., Dellago C., Novotny L., Direct measurement of Kramers turnover with a levitated nanoparticle. Nat. Nanotechnol. 12, 1130–1133 (2017). PubMed
Millen J., Deesuwan T., Barker P., Anders J., Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat. Nanotechnol. 9, 425–429 (2014). PubMed
Gieseler J., Quidant R., Dellago C., Novotny L., Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol. 9, 358–364 (2014). PubMed
Pettit R. M., Ge W., Kumar P., Luntz-Martin D. R., Schultz J. T., Neukirch L. P., Bhattacharya M., Vamivakas A. N., An optical tweezer phonon laser. Nat. Photon. 13, 402–405 (2019).
Parkin S. J., Vogel R., Persson M., Funk M., Loke V. L. Y., Nieminen T. A., Heckenberg N. R., Rubinsztein-Dunlop H., Highly birefringent vaterite microspheres: Production, characterization and applications for optical micromanipulation. Opt. Express 17, 21944–21955 (2009). PubMed
Grønbech-Jensen N., Farago O., A simple and effective Verlet-type algorithm for simulating Langevin dynamics. Mol. Phys. 111, 983–991 (2013).
Simpson S. H., Zemánek P., Maragò O. M., Jones P. H., Hanna S., Optical binding of nanowires. Nano Lett. 17, 3485–3492 (2017). PubMed
A. Doicu, T. Wreidt, Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).
Simpson S. H., Hanna S., Optical angular momentum transfer by Laguerre-Gaussian beams. J. Opt. Soc. Am. A 26, 625–638 (2009). PubMed
L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
Simpson S. H., Hanna S., Stability analysis and thermal motion of optically trapped nanowires. Nanotechnology 23, 205502 (2012). PubMed
Simpson S. H., Hanna S., Holographic optical trapping of microrods and nanowires. J. Opt. Soc. Am. A 27, 1255–1264 (2010). PubMed
Synchronization of spin-driven limit cycle oscillators optically levitated in vacuum