Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28703771
PubMed Central
PMC5537677
DOI
10.3390/v9070185
PII: v9070185
Knihovny.cz E-zdroje
- Klíčová slova
- arbovirus, host range, insect-specific virus, origin of arbovirus, transmission mechanism, vertebrate reservoir, virus maintenance, zoonosis,
- MeSH
- arbovirové infekce přenos virologie MeSH
- arboviry izolace a purifikace MeSH
- Culicidae virologie MeSH
- dengue přenos virologie MeSH
- hostitelská specificita MeSH
- infekce virem zika přenos virologie MeSH
- lidé MeSH
- myši MeSH
- obratlovci virologie MeSH
- západonilská horečka přenos MeSH
- zdroje nemoci virologie MeSH
- zoonózy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The rapid succession of the pandemic of arbovirus diseases, such as dengue, West Nile fever, chikungunya, and Zika fever, has intensified research on these and other arbovirus diseases worldwide. Investigating the unique mode of vector-borne transmission requires a clear understanding of the roles of vertebrates. One major obstacle to this understanding is the ambiguity of the arbovirus definition originally established by the World Health Organization. The paucity of pertinent information on arbovirus transmission at the time contributed to the notion that vertebrates played the role of reservoir in the arbovirus transmission cycle. Because this notion is a salient feature of the arbovirus definition, it is important to reexamine its validity. This review addresses controversial issues concerning vertebrate reservoirs and their role in arbovirus persistence in nature, examines the genesis of the problem from a historical perspective, discusses various unresolved issues from multiple points of view, assesses the present status of the notion in light of current knowledge, and provides options for a solution to resolve the issue.
Division of Microbiology and Infectious Diseases PathWest Nedlands Western Australia 6009
Faculty of Medical Sciences Curtin University GPO Box U1987 Perth WA 6845 Australia
Institute of Vertebrate Biology Academy of Sciences of Czech Republic 60365 Brno Czech Republic
Zobrazit více v PubMed
World Health Organization . Arthropod-Borne and Rodent-Borne Viral Diseases. WHO; Geneva, Switzerland: 1985. pp. 1–116. A report of a WHO scientific group. PubMed
Scott T.W. Vertebrate host ecology. In: Monath T.P., editor. The Arboviruses: Epidemiology and Ecology. Volume 2. CRC Press; Boca Raton, FL, USA: 1988. pp. 257–280.
Reisen W.K. North American mosquito-borne arboviruses: Questions of persistence and amplification. Bull. Soc. Vector Ecol. 1990;15:11–21.
Nuttall P.A., Labuda M. Tick-borne encephalitis subgroup. In: Sonenshine D.E., Mather T.N., editors. Ecological Dynamics of Tick-Borne Zoonoses. Oxford University Press; New York, NY, USA: 1994. pp. 351–391.
Kuno G., Chang G.J. Biological transmission of arboviruses: Reexamination and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin. Microbiol. Rev. 2005;18:608–637. doi: 10.1128/CMR.18.4.608-637.2005. PubMed DOI PMC
Lord C.C., Rutledge C.R., Tabachnick W.J. Relationships between host viremia and vector susceptibility for arboviruses. J. Med. Entomol. 2006;43:623–630. doi: 10.1093/jmedent/43.3.623. PubMed DOI PMC
World Health Organization . Arboviruses and Human Disease. Report of a WHO Scientific Group. WHO; Geneva, Switzerland: 1967. pp. 5–84. PubMed
Boyce R.W. Mosquito or Man? The Concept of the Tropical World. E.P. Dutton & Co.; New York, NY, USA: 1909. pp. 41–48.
Hardy A. Animals, disease, and man: Making connections. Perspect. Biol. Med. 2003;46:200–215. doi: 10.1353/pbm.2003.0021. PubMed DOI
Bugher J.C. The mammalian host in yellow fever. In: Strode G.K., editor. Yellow Fever. McGrow-Hill Book Co.; New York, NY, USA: Toronto, ON, Canada: London, UK: 1951. pp. 299–384.
Honigsbaum M. Tipping the balance: Karl Friedrich Meyer, latent infection, and the birth of modern idea of disease ecology. J. Hist. Biol. 2016;49:261–309. doi: 10.1007/s10739-015-9430-7. PubMed DOI
Meyer K.F. The Animal Kingdom, a reservoir of human disease. Ann. Intern. Med. 1948;29:326–347. PubMed
Meyer K.F. Virus diseases of animals transmissible to man. Ann. Intern. Med. 1934;8:552–569.
Taylor R.M. Epidemiology. In: Strode G.K., editor. Yellow Fever. McGraw-Hill Book Co.; New York, NY, USA: Toronto, ON, Canada: London, UK: 1951. pp. 427–538.
Reeves W.C. Arbovirologist and Professor, UC Berkeley School of Public Health, an Oral History Conducted in 1990 and 1991 by Sally Smith Hughes. The Bancroft Library, University of California; Berkeley, CA, USA: 1993. p. 193.
Johnson K.M. Professor William C. Reeves: Scholar, teacher, and friend. Am. J. Trop. Med. Hyg. 1987;37(Suppl. 3):S3–S7. doi: 10.4269/ajtmh.1987.37.3S. PubMed DOI
Huff C.G. A proposed classification of disease transmission by arthropods. Science. 1931;74:456–457. doi: 10.1126/science.74.1923.456-a. PubMed DOI
Maramorosch K. Biological transmission of plant viruses by animal vectors. Trans. N. Y. Acad. Sci. 1954;83:234–240. PubMed
Reeves W.C. Arthropods as vectors and reservoirs of animal pathogenic viruses. In: Hallauer C., Meyer K.F., editors. Handbuch der Virusforschung. Springer; Vienna, Austria: 1958. pp. 177–202.
Thomas H.W. Yellow fever: Results of inoculation of cases and report of talk to the society. Trans. R. Soc. Trop. Med. Hyg. 1909;3:59–62. doi: 10.1080/00034983.1910.11685706. DOI
Balfour A. Wild monkeys as reservoir for virus of yellow fever. Lancet. 1914;1:1176–1178. doi: 10.1016/S0140-6736(01)56899-3. DOI
Reeves W.C., Hutson G.A., Bellamy R.E., Scrivani R.P. Chronic latent infections of birds with western equine encephalomyelitis virus. Proc. Soc. Exp. Biol. Med. 1958;97:733–736. doi: 10.3181/00379727-97-23862. PubMed DOI
Luedke A.J., Jones R.H., Walton T.E. Overwintering mechanism for bluetongue virus: Biological recovery of latent virus from a bovine by bites of Culicoides variipennis. Am. J. Trop. Med. Hyg. 1977;26:313–325. doi: 10.4269/ajtmh.1977.26.313. PubMed DOI
Kuno G. Persistence of arboviruses and antiviral antibodies in vertebrate hosts: Its occurrence and impacts. Rev. Med. Virol. 2001;11:165–190. doi: 10.1002/rmv.314. PubMed DOI
Smith W. Mechanisms of Virus Infection. General Considerations. In: Smith W., editor. Mechanisms of Virus Infection. Academic Press; London, UK: New York, NY, USA: 1963. pp. 1–34.
Semenov B.F., Chumikhin S.P., Karmysheva V., Iakovleva N.I. Experiments with West Nile, Sindbis, Bhanja, and Sicilian mosquito fever viruses. Vestn. Akad. Med. Nauk USSR. 1973;28:79–83. PubMed
Abdussalam M. Significance of ecological studies of wild animal reservoirs of zoonoses. Bull. World Health Organ. 1959;21:179–186. PubMed PMC
Mims C.A. The meaning of persistent infections in nature. Bull. World Health Organ. 1975;52:747–751. PubMed PMC
Rodhain F. The idea of natural reservoir in arbovirology. Bull. Soc. Pathol. Exot. 1998;91:279–282. (In French) PubMed
Plowright R.K., Peel A.J., Streicker D.G., Gilbert A.T., McCallum H., Wood J., Baker M.L., Restif O. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations. PLoS Negl. Trop. Dis. 2016;10:e0004796. doi: 10.1371/journal.pntd.0004796. PubMed DOI PMC
Ahmed R., Morrison L.A., Knipe D.M. Viral persistence. In: Nathanson N., Ahmed R., Gonzalez-Scarano F., Griffin D.E., Holmes K.V., Murphy F.A., Robinson H.L., editors. Viral Pathogens. Lippincott-Raven; New York, NY, USA: 1997. pp. 181–205.
Eklund C.M. The ecology of mosquito borne viruses. Annu. Rev. Microbiol. 1953;7:339–360. doi: 10.1146/annurev.mi.07.100153.002011. PubMed DOI
Doherty R.L. Viruses, mosquitoes, and epidemics. Qld. Health. 1964;1:1–9.
Andrewes C.H. Factors in virus evolution. Adv. Virus Res. 1957;4:1–24. PubMed
Reeves W.C. Overwintering of arboviruses. In: Reeves W.C., Asman S.M., Hardy J.L., Milby M.M., Reisen W.K., editors. Epidemiology and Control of Mosquito-Borne Arboviruses in California, 1943–1987. California Mosquito Control Association, Inc.; Sacramento, CA, USA: 1990. pp. 357–382.
Huhtamo E., Cook S., Moureau G., Uzcátegui N.Y., Sironen T., Kuivanen S., Putkuri N., Kurkela S., Harbach R.E., Firth A.E., et al. Novel flaviviruses from mosquitoes: Mosquito-specific evolutionary lineages within the phylogenetic group of mosquito-borne flaviviruses. Virology. 2014;464–465:320–329. doi: 10.1016/j.virol.2014.07.015. PubMed DOI PMC
Querido J., Echeverria M.G., Marti G.A., Costa R.M., Susevich M.L., Rabinovich J.W., Copa A., Montaño N.A., Garcia L., Cordova M., et al. Seroprevalence of Triatoma virus (Dicistroviridae: Cripaviridae) antibodies in Chagas disease patients. Parasites Vectors. 2015;8:29. doi: 10.1186/s13071-015-0632-9. PubMed DOI PMC
Scotti P.D., Longsworth J.F. Naturally occurring IgM antibodies to a small RNA insect virus in some mammalian sera in New Zealand. Intervirology. 1980;13:186–191. doi: 10.1159/000149124. PubMed DOI
Masembe C., Michuki G., Onyando M., Rumberic C., Norling M., Bishop R.P., Djikeng A., Kemp S.J., Orth A., Skilton R.A., et al. Viral metagenomics demonstrates that domestic pigs are a potential reservoir for Ndumu virus. Virol. J. 2012;9:218. doi: 10.1186/1743-422X-9-218. PubMed DOI PMC
Chung H.C., Nguyen V.G., Goode D., Park C.H., Kim A.R., Moon H.J., Park S.J., Kim H.K., Park B.K. Gouléako and Herbert viruses in pigs, Republic of Korea, 2013. Emerg. Infect. Dis. 2014;20:2072–2075. doi: 10.3201/eid2012.131742. PubMed DOI PMC
Junglen S., Marklewitz M., Zirkel F., Wollny R., Meyer B., Heidemann H., Metzger S., Annan A., Dei D., Leendertz F.H., et al. No evidence of Gouléako and Herbert virus infections in pigs, Cộte d’Ivoire and Ghana. Emerg. Infect. Dis. 2015;21:2190–2193. doi: 10.3201/eid2112.141840. PubMed DOI PMC
Marklewitz M., Zirkel F., Kurth A., Drosten C., Junglen S. Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of pathogenic RNA virus family. Proc. Natl. Acad. Sci. USA. 2015;112:7536–7541. doi: 10.1073/pnas.1502036112. PubMed DOI PMC
Hammon W.M., Reeves W.C. Recent advances in the epidemiology of the arthropod-borne virus encephalitides. Am. J. Public Health Nations. 1945;35:994–1004. doi: 10.2105/AJPH.35.10.994. PubMed DOI PMC
Lord J.S., Gurley E.S., Pulliam J.R.C. Rethinking Japanese encephalitis virus transmission: A framework for implicating host and vector species. PLoS Negl. Trop. Dis. 2015;9:e0004074. doi: 10.1371/journal.pntd.0004074. PubMed DOI PMC
Burton A.N., McLintock J., Rempel J.G. Western equine encephalitis virus in Saskatchewan garter snakes and leopard frogs. Science. 1966;154:1029–1031. doi: 10.1126/science.154.3752.1029. PubMed DOI
Bowen G.S. Prolonged western equine encephalitis viremia in the Texas tortoise (Gopherus berlandieri) Am. J. Trop. Med. Hyg. 1977;26:171–175. doi: 10.4269/ajtmh.1977.26.171. PubMed DOI
Russell R.C. Ross River virus: Ecology and distribution. Annu. Rev. Entomol. 2002;47:1–31. doi: 10.1146/annurev.ento.47.091201.145100. PubMed DOI
Broom A.K., Lindsay M.D.A., Johansen C.A., Wright A.E., Mackenzie J.S. Two possible mechanisms for survival and initiation of Murray Valley encephalitis virus activity in the Kimberley region of Western Australia. Am. J. Trop. Med. Hyg. 1995;53:95–99. doi: 10.4269/ajtmh.1995.53.95. PubMed DOI
Venter G.J., Labuschagne K., Majatladi D., Boikanyo S.N., Lourens C., Ebersohn K., Venter E.H. Culicoides species abundance and potential over-wintering of African horse sickness virus in the Onderstepoort area, Gauteng, South Africa. J. S. Afr. Vet. Assoc. 2014;85:1–6. doi: 10.4102/jsava.v85i1.1102. PubMed DOI
Nelms B.M., Macedo P.A., Kothera L., Savage H.M., Reisen W.K. Overwintering biology of Culex (Diptera: Culicidae) mosquitoes in the Sacramento Valley of California. J. Med. Entomol. 2013;50:773–790. doi: 10.1603/ME12280. PubMed DOI PMC
Kumm H.W. Yellow fever transmission experiments with South American bats. Ann. Trop. Med. Parasistol. 1932;26:207–213. doi: 10.1080/00034983.1932.11684716. DOI
Sulkin S.E. The bats as a reservoir of viruses in nature. Prog. Med. Virol. 1962;4:157–207.
Le Lay-Rogues G., Chastel C. Virus des chiropteres transmis ou non par arthropods. Med. Trop. 1986;46:389–395. PubMed
Geevarghese G., Banerjee K. Role of bats in the natural cycle of arboviruses. Curr. Sci. 1990;59:26–31.
Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006;19:531–545. doi: 10.1128/CMR.00017-06. PubMed DOI PMC
Gebhardt L.P., Stanton G.J. The role of poikilothermic hosts as virus reservoirs. Jpn. J. Med. Sci. Biol. 1967;20:30–34. PubMed
Chamberlain R.W. Epidemiology of arthropod-borne togaviruses: The role of arthropods as hosts and vectors and of vertebrate hosts in natural transmission cycles. In: Schlesinger R.W., editor. The Togaviruse: Biology, Structure, Replication. Academic Press; New York, NY, USA: London, UK: Toronto, ON, Canada: Sydney, Australia: San Francisco, CA, USA: 1980. pp. 175–227.
Reeves W.C. Overwintering of arboviruses. Prog. Med. Virol. 1974;17:193–220. PubMed
Hardy J.L., Reeves W.C. Experimental studies on infection in vertebrate hosts. In: Reeves W.C., Asman S.M., Hardy J.L., Milby M.M., Reisen W.K., editors. Epidemiology and Control of Mosquito-Borne Arboviruses in California, 1943–1987. Mosquito and Vector Control Association of California Inc.; Sacramento, CA, USA: 1990. pp. 66–127.
Melville L.F., Hunt N.T., Davis S.S., Weir R.P. Bluetongue virus does not persist in naturally infected cattle. Vet. Ital. 2004;40:502–507. PubMed
Walton T.E. The history of bluetongue and a current global overview. Vet. Ital. 2004;40:31–38. PubMed
Owen J.C., Moore F.R., Williams A.J., Ward M.P., Beveroth T.A., Miller E.A., Wilson L.C., Morley V.J., Abbey-Lee R.N., Veeneman B.A., et al. Test of recrudescence hypothesis for overwintering of West Nile virus in gray catbirds. J. Med. Entomol. 2010;47:451–457. doi: 10.1093/jmedent/47.3.451. PubMed DOI
Collins D.L. Arthropod-borne viral encephalitides. In: Hull T.G., editor. Diseases Transmitted from Animals to Man. Charles C. Thomas Publisher; Springfield, IL, USA: 1963. pp. 731–773.
Downs W.G. Arboviruses: Epidemiological considerations. In: Mudd S, editor. Infectious Agents and Host Reactions. W.B. Saunders Co.; Philadelphia, PA, USA: 1970. pp. 538–555.
Reeves W.C. Mosquitoes and virus diseases. In: Maramorosch K., editor. Biological Transmission of Diseases Agents. Academic Press; New York, NY, USA: London, UK: 1962. pp. 75–82.
Chamberlain R.W. Arbovirology—Then and now. Am. J. Trop. Med. Hyg. 1982;31:430–437. doi: 10.4269/ajtmh.1982.31.430. PubMed DOI
Johnson H.N. Foreword. In: Steele J.H., Beran G.W., editors. CRC Handbook Series in Zoonoses. Section B: Viral Zoonoses. Volume 1 CRC Press; Boca Raton, FL, USA: 1981.
World Health Organization . Joint FAO/WHO Expert Committee on Zoonoses. WHO; Geneva, Switzerland: 1967. p. 68. PubMed
Muul I. Mammalian ecology and epidemiology of zoonoses. Science. 1970;175:1275–1279. doi: 10.1126/science.170.3964.1275. PubMed DOI
Meyer K.F. The Zoonoses in Their Relation to Rural Health. University of California Press; Oakland, CA, USA: 1956. p. 49.
Villarreal L.P., Defillippis V.R., Gottlieb K.A. Acute and persistent viral life strategies and their relationship to emerging diseases. Virology. 2000;272:1–6. doi: 10.1006/viro.2000.0381. PubMed DOI
Geoghegan J.L., Senior A.M., Di Giallonardo F., Holmes E.C. Virological factors that increases the transmissibility of emerging human viruses. Proc. Natl. Acad. Sci. USA. 2016;113:4170–4175. doi: 10.1073/pnas.1521582113. PubMed DOI PMC
Gritsun T.S., Frolova T.V., Zhankov A.I., Armesto M., Turner S.L., Frolova M.P., Pogodina V.V., Lashkevich V.A., Gould E.A. Characterization of a Siberian virus isolated from a patient with progressive chronic tick-borne encephalitis. J. Virol. 2003;77:25–36. doi: 10.1128/JVI.77.1.25-36.2003. PubMed DOI PMC
Dumina A.L. Experimental study of the extent to which the tick Ixodes persulcatus becomes infected with Russian spring-summer encephalitis virus as a result of sucking the blood of immune animals. Vopr. Virusol. 1958;3:166–170. (In Russian) PubMed
Nuttall P.A., Labuda M. Dynamics of infection in tick vectors and at the tick-host interface. Adv. Virus Res. 2003;60:233–272. PubMed
Wheeler S.S., Vineyard M.P., Barker C.M., Reisen W.K. Importance of recrudescent avian infection in West Nile overwintering: Incomplete antibody neutralization of virus allows infrequent vector infection. J. Med. Entomol. 2012;49:895–902. doi: 10.1603/ME11286. PubMed DOI
Cowled C., Melville L., Weir R., Walsh S., Gubala A., Davis S., Boyle D. Persistent and recrudescent infection in cattle following natural infection with Middle Point orbivirus. Arch. Virol. 2012;157:1161–1165. doi: 10.1007/s00705-012-1277-z. PubMed DOI
Price W.H. Chronic disease and virus persistence in mice inoculated with Kyasanur Forest disease virus. Virology. 1966;29:679–681. doi: 10.1016/0042-6822(66)90294-7. PubMed DOI
Gerloff R.K., Larson C.L. Experimental infection of rhesus monkeys with Colorado tick fever virus. Am. J. Pathol. 1959;35:1043–1054. PubMed PMC
Oshiro L.S., Dondero D.V., Emmons R.W., Lennette E.H. The development of Colorado tick fever virus within cells of the haemopoietic system. J. Gen. Virol. 1978;39:73–79. doi: 10.1099/0022-1317-39-1-73. PubMed DOI
Johnson B.K., Varma M.G.R. Infection of Aedes aegypti cell line with infectious arbovirus-antibody complexes. Trans. R. Soc. Trop. Med. Hyg. 1976;70:230–234. doi: 10.1016/0035-9203(76)90045-6. PubMed DOI
Endy T.P., Nisalak A., Chansuttiwat S., Vaughn D.W., Green S., Ennis F.A., Rothman A.L., Libraty D.H. Relationship of pre-existing dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a protective cohort study of DV infection in Thailand. J. Infect. Dis. 2004;189:990–1000. doi: 10.1086/382280. PubMed DOI
Sirichayakul C., Sabchaareon A., Limkittikul K., Yoksan S. Plaque reduction neutralization antibody test does not accurately predict protection against dengue infection in Ratchaburi cohort, Thailand. Virol. J. 2014;11:48. doi: 10.1186/1743-422X-11-48. PubMed DOI PMC
Jiang W.R., Lowe A., Higgs S., Reid H., Gould E.A. Single amino acid codon change detected in louping ill virus antibody-resistant mutants with reduced neurovirulence. J. Gen. Virol. 1993;74:931–935. doi: 10.1099/0022-1317-74-5-931. PubMed DOI
Lok S.M., Ng M.L., Aaskov J. Amino acid and phenotypic changes in dengue 2 virus associated with escape from neutralization by IgM antibody. J. Med. Virol. 2001;65:315–323. doi: 10.1002/jmv.2036. PubMed DOI
Pal P., Fox J.M., Hawman D.W., Huang Y.J., Messaoudi I., Kreklywich C., Denton M., Legasse A.W., Smith P.P., Johnson S., et al. Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes. J. Virol. 2014;88:8213–8226. doi: 10.1128/JVI.01032-14. PubMed DOI PMC
Russell P.K., McCown J.M. Comparison of dengue-2 and dengue-3 virus strains by neutralization tests and identification of a subtype of dengue-3. Am. J. Trop. Med. Hyg. 1972;21:97–99. doi: 10.4269/ajtmh.1972.21.97. PubMed DOI
Leonova G.N., Kondratov I.G., Maystrovskaya O.S., Takashima I., Belikov S.I. Louping ill virus (LIV) in the Far East. Arch. Virol. 2015;160:663–673. doi: 10.1007/s00705-014-2310-1. PubMed DOI
Westaway E.G. The neutralization of arboviruses: II. Neutralization in heterologous virus-serum mixture with four group B arboviruses. Virology. 1965;26:528–537. doi: 10.1016/0042-6822(65)90314-4. PubMed DOI
Calisher C.H., Karabatsos N., Lazuick J.S., Monath T.P., Wolff K.L. Reevaluationof the Western equine encephalitis antigenic complex of alphaviruses (family Togaviridae) as determined by neutralization tests. Am. J. Trop. Med. Hyg. 1988;38:447–452. doi: 10.4269/ajtmh.1988.38.447. PubMed DOI
Takamatsu H., Mellor P.S., Mertens P.P.C., Kirkham P.A., Burroughs J.N., Parkhouse R.M.E. A possible overwintering mechanism for bluetongue virus in the absence of the insect vector. J. Gen. Virol. 2003;84:227–235. doi: 10.1099/vir.0.18705-0. PubMed DOI
Melzi E., Caporale M., Rocchi M., Martin V., Gamino V., di Provido A., Marruchella G., Entrican G., Sevilla N., Palmarini M. Follicular dendritic cell disruption as a novel mechanism of virus- induced immunosuppression. Proc. Natl. Acad. Sci. USA. 2016;113:E6238–E6247. doi: 10.1073/pnas.1610012113. PubMed DOI PMC
Ryzantseva N.V., Zhukova O.B., Novitskii V.V., Pirogova N.P., Lepekhin A.V., Tokareva N.V., Mikhailova O.V., Plotnikova N.N., Sevost’yanova N.V. Structural and functional characteristics of lymphocytes in chronic carriers of tick-borne encephalitis virus. Bull. Exp. Biol. Med. 2002;134:471–473. doi: 10.1023/A:1022698532379. PubMed DOI
Goupil B.A., Mores C.N. A review of chikungunya virus-induced arthralgia: Clinical manifestations, therapeutics, and pathogenesis. Open Rheumatol. J. 2016;10:129–140. PubMed PMC
Journeaux S.F., Brown W.G., Aaskov J.G. Prolonged infection of human synovial cells with Ross River virus. J. Gen. Virol. 1987;68:3165–3169. doi: 10.1099/0022-1317-68-12-3165. PubMed DOI
Soden M., Vasudevan H., Roberts B., Coelen R., Hamlin G., Vasudevan S., La Brody J. Detection of viral ribonucleic acid and histological analysis of inflamed synovium in Ross River virus infection. Arthritis Rheum. 2000;43:365–369. doi: 10.1002/1529-0131(200002)43:2<365::AID-ANR16>3.0.CO;2-E. PubMed DOI
Bakonyi T., Gajdon G.K., Schwing R., Vogl W., Häbich A.-C., Thaller D., Weissenböck H., Rudolf I., Hubálek Z., Nowotny N. Chonic West Nile virus infection in kea (Nestor notabilis) Vet. Microbiol. 2015;183:135–139. doi: 10.1016/j.vetmic.2015.12.012. PubMed DOI
Ravi V., Desai A.S., Shenoy P.K., Satischechandra P., Chandramuki A., Gourie-Devi M. Persistence of Japanese encephalitis virus in the human nervous system. J. Med. Virol. 1993;40:326–329. doi: 10.1002/jmv.1890400412. PubMed DOI
Zhdanov V.M. Integration of viral genomes. Nature. 1975;256:471–473. doi: 10.1038/256471a0. PubMed DOI
Suhrbier A., Jaffar-Bandjee M.-C., Gasque P. Arthritogenic alphaviruses—An overview. Nat. Rev. Rheumatol. 2012;8:420–429. doi: 10.1038/nrrheum.2012.64. PubMed DOI
Katzourakis A., Gifford R.J. Endogenous viral elements in animal genomes. PloS Genet. 2010;6:e1001191. doi: 10.1371/journal.pgen.1001191. PubMed DOI PMC
Vögtlin A., Hoffmann M.A., Nenninger C., Renzuello S., Steinrigl A., Loitsch A., Schwermer H., Kaufmann C., Thür B. Long-term infection of goats with bluetongue virus serotype 25. Vet. Microbiol. 2013;166:165–173. doi: 10.1016/j.vetmic.2013.06.001. PubMed DOI
Murray K., Walker C., Herrington E., Lewis J.A., McCormick J., Beasley D.W., Tesh R.B., Fisher-Hoch S. Persistent infection with West Nile virus years after initial infection. J. Infect. Dis. 2010;201:2–4. doi: 10.1086/648731. PubMed DOI PMC
Wheeler S.S., Langevin S.A., Brault A.C., Woods L., Carroll B.D., Reisen W.K. Detection of persistent West Nile virus RNA in experimentally and naturally infected avian hosts. Am. J. Trop. Med. Hyg. 2012;87:559–564. doi: 10.4269/ajtmh.2012.11-0654. PubMed DOI PMC
Yamanishi S., Yamanaka Y., Kameyama T., Miki K., Miyamoto C., Takashima I. Detection of Japanese encephalitis virus genome in mononuclear cells from blood and spleen of swine. J. Jpn. Vet. Med. Assoc. 1997;50:731–734. doi: 10.12935/jvma1951.50.731. (In Japanese) DOI
Bakhavalova V.N., Potapova O.F., Morozova O.V. Vertical transmission of tick-borne encephalitis virus between generations of adapted reservoir small rodents. Virus Res. 2008;140:172–178. doi: 10.1016/j.virusres.2008.12.001. PubMed DOI
Gibney K.B., Lanciotti R.S., Sejvar J.J., Nugent C.T., Linnen J.M., Delory M.J., Lehman J.A., Boswell E.N., Staples J.E., Fischer M. West Nile virus RNA not detected in urine of 40 people tested 6 years after acute West Nile virus. J. Infect. Dis. 2011;203:344–347. doi: 10.1093/infdis/jiq057. PubMed DOI PMC
Lancaster M.U., Hoggetts S.I., Mackenzie J.S., Urosevic M. Characterization of defective viral RNA produced during persistent infection of vero cells with Murray Valley encephalitis virus. J. Virol. 1998;72:2474–2482. PubMed PMC
Honda T., Tomonaga K. Endogenous non-retroviral RNA virus elements evidence a novel type of antiviral immunity. Mob. Gen. Elem. 2016;6:e1165785. doi: 10.1080/2159256X.2016.1165785. PubMed DOI PMC
Wheeler S.S., Vineyard M.P., Woods L.W., Reisen W.K. Dynamics of West Nile virus persistence in house sparrows (Passer domesticus) PLoS Negl. Trop. Dis. 2012;6:e1860. doi: 10.1371/journal.pntd.0001860. PubMed DOI PMC
Nicastri E., Castilletti C., Liuzzi G., Ianetta M., Capobianchi M.R., Ippolito G. Persistent detection of Zika virus RNA in semen six months after symptom onset in a traveler returning from Haiti to Italy, February, 2016. Eur. Surveill. 2016;21:30314. doi: 10.2807/1560-7917.ES.2016.21.32.30314. PubMed DOI PMC
Bhatnagar J., Rabeneck D.B., Martines R.B., Reagan-Steiner S., Ermias Y., Estetter L.B.C., Suzuki T., Ritter J., Keating M.K., Hale G., et al. Zika virus RNA replication and persistence in brain and placental tissue. Emerg. Infect. Dis. 2017;23:405–414. doi: 10.3201/eid2303.161499. PubMed DOI PMC
Driggers R.W., Ho C.-Y., Korhonen E.M., Kuivanen S., Jääkeläinen A.J., Smura T., Rosenberg A., Hill D.A., DeBiasi R.L., Vezina G., et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 2016;274:2142–2151. doi: 10.1056/NEJMoa1601824. PubMed DOI
Duggal N.K., Ritter J.M., Pestorius S.E., Zaki S.R., Davis B.S., Chang G.J., Bowen R.A., Brault A.C. Frequent Zika virus sexual transmission and prolonged viral RNA shedding in an immunodeficient mouse model. Cell Rep. 2017;18:1751–1760. doi: 10.1016/j.celrep.2017.01.056. PubMed DOI PMC
Kuno G. Transmission of arboviruses without involvement of arthropod vectors. Acta Virol. 2001;45:139–150. PubMed
Gilbert L., Jones L.D., Laurenson M.K., Gould E.A., Reid H.W., Hudson P.J. Ticks need not bite their red grouse hosts to infect them with louping ill virus. Proc. R. Soc. Lond. B (Suppl.) 2004;271:S202–S205. doi: 10.1098/rsbl.2003.0147. PubMed DOI PMC
Benda R. The common tick, Ixodes ricinus L., as a reservoir and vector of tick-borne encephalitis. II. Experimental transmission of tick-borne encephalitis to laboratory animals by ticks of different stages. Hyg. Epidemiol. Microbiol. Immunol. 1958;2:331–344.
Jenny B.W., Erickson G.A., Snyder M.L. Vesicular stomatitis outbreaks and surveillance in the United States. January 1980 through May 1984. Proc. U. S. Anim. Health Assoc. 1984;88:337–345.
Hanson R.P. The natural history of vesicular stomatitis. Bacteriol. Rev. 1952;16:179–203. PubMed PMC
Huyvaert K.P., Moore A.T., Panella N.A., Edwards E.A., Brown M.B., Komar N., Brown C.R. Experimental inoculation of house sparrows (Passer domesticus) with Buggy Creek virus. J. Wildlife Dis. 2008;44:331–340. doi: 10.7589/0090-3558-44.2.331. PubMed DOI
Reisen W.K., Fang Y., Lothrop H.D., Martinez V.M., Wilson J., Occonor P., Carney R., Cahoon-Young B., Shafli M., Brault A.C. Overwintering of West Nile virus in southern California. J. Med. Entomol. 2006;43:344–355. doi: 10.1093/jmedent/43.2.344. PubMed DOI
Dawson J.R., Stone W.B., Ebel G.D., Young D.S., Galinski D.S., Pensabene J.P., Franke M.A., Eidson M., Kramer L.D. Crow deaths caused by West Nile virus during winter. Emerg. Infect. Dis. 2007;13:1912–1914. doi: 10.3201/eid1312.070413. PubMed DOI PMC
Ricklin M.E., García-Nicolás O., Brechbühl D., Python S., Zumkehr B., Nougairede A., Charrel R.N., Posthaus H., Ceverann A., Summerfiled A. Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nat. Commun. 2016;7:10832. doi: 10.1038/ncomms10832. PubMed DOI PMC
Van Vuuren M., Penzhom B.L. Geographic range of vector-borne infections and their vectors: the role of African wildlife. Rev. Sci. Tech. 2015;34:139–149. doi: 10.20506/rst.34.1.2350. PubMed DOI
Sánchez-Vizcaino J.M., Mur L., Bastos A.D., Penrith M.L. New insights into the role of ticks in African swine fever epidemiology. Rev. Sci. Tech. 2015;34:503–511. doi: 10.20506/rst.34.2.2375. PubMed DOI
DeFoliart G.R., Grimstad P.R., Watts D.M. Advances in mosquito-borne arbovirus vector research. Ann. Rev. Entomol. 1987;32:479–506. doi: 10.1146/annurev.en.32.010187.002403. PubMed DOI
Spielman A. Research approaches in the development of interventions against vector-borne infection. J. Exp. Biol. 2006;206:3727–3734. doi: 10.1242/jeb.00677. PubMed DOI
Gubler D.J. The president’s address. Prevention and control of tropical diseases in the 20th century: Back to the field. Am. J. Trop. Med. Hyg. 2001;65:v–xi. doi: 10.4269/ajtmh.2001.65.1. PubMed DOI
Carver S., Bestall A., Jardine A., Ostfeld R.S. Influence of hosts on the ecology of arboviral transmission. Potential mechanisms influencing dengue, Murray Valley encephalitis, and Ross River virus in Australia. Vector-Borne Zoonotic Dis. 2009;9:51–64. doi: 10.1089/vbz.2008.0040. PubMed DOI
Süss J. Epidemiology and ecology of TBE relevant to the production of effective vaccine. Vaccine. 2003;21:S19–S35. doi: 10.1016/S0264-410X(02)00812-5. PubMed DOI
Komar N. West Nile virus: Epidemiology and ecology in North America. Adv. Virus Res. 2003;61:185–234. PubMed
Go Y.Y., Balasuriya U.B.R., Lee C.-K. Zoonotic encephalitides cuased by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clin. Exp. Vaccine Res. 2014;3:58–77. doi: 10.7774/cevr.2014.3.1.58. PubMed DOI PMC
Mackenzie J.S., McKinnon M., Jeggo M. One Health: From concept to practice. In: Yamada A., Kahn L.H., Kaplan B., Monath T.P., Woodall J., Conti L.A., editors. Confronting Emerging Zoonoses: The One Health Paradigm. Springer; Tokyo, Japan: 2014. pp. 163–189.
Clements A.N. The Biology of Mosquitoes. Volume 3. CABI; Wallingford, UK: 2012. Transmission of viruses and interactions with bacteria; pp. 105–106.
Diaz L.A., Nemeth N.M., Bowen R.A., Almiron W.R., Contigiani M.S. Comparison of Argentinean Saint Louis encephalitis virus non-epidemic and epidemic strain infections in an avian model. PLoS Negl. Trop. Dis. 2011;5:e1177. doi: 10.1371/journal.pntd.0001177. PubMed DOI PMC
Huang Z.Y.X., de Boer W.F., van Langevelde F., Olson V., Blackburn T.M., Prins H.H.T. Species’ life-history traits explain interspecific variation in reservoir competence: A possible mechanism underlying the dilution effect. PLoS ONE. 2013;8:e54341. PubMed PMC
Althouse B.A., Guerbois M., Cummings D.A.T., Diop O.M., Faye O., Faye A., Diallo D., Sadio B.D., Sow A., Faye O., et al. Monkey in the middle: Monkeys serve as amplification hosts but not reservoir hosts of sylvatic Chikungunya virus. bioRxiv. 2016 doi: 10.1101/07.9046. DOI
Steele J.H. In: CRC Handbook Series in Zoonoses. Section B: Viral Zoonoses. Steele J.H., Beran G.W., editors. Volume 2 CRC Press; Boca Raton, FL, USA: 1981.
Parrish C.R., Holmes E.C., Morens D.M., Pack E.-C., Burke D.S., Calisher C.H., Laughlin C.A., Saif L.J., Daszak P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 2008;72:457–470. doi: 10.1128/MMBR.00004-08. PubMed DOI PMC
Theiler M., Downs W.G. The Arthropod-Borne Viruses of Vertebrates. Yale University Press; New Haven, CT, USA: London, UK: 1973. p. 578.
Huff C.G. Studies on the evolution of some disease-producing organisms. Q. Rev. Biol. 1938;13:196–206. doi: 10.1086/394557. DOI
Baker A.C. The typical epidemic series. Am. J. Trop. Med. 1943;23:559–566. doi: 10.4269/ajtmh.1943.s1-23.559. DOI
Schlesinger R.W. New opportunities in biological research offered by arthropod cell culture. 1. Some speculations on the possible role of arthropods in the evolution of arboviruses. Curr. Top. Microbiol. 1971;55:241–245. PubMed
Porterfield J.S. Antigenic characteristics and classification of Togaviridae. In: Schlesinger R.W., editor. The Togaviruses—Biology, Structure, Replication. Academic Press; New York, NY, USA: London, UK: 1980. pp. 13–46.
Koblet H. Viral evolution and insects as a possible virologic turning table. In Vitro Cell. Dev. Biol. 1993;29A:274–283. doi: 10.1007/BF02633955. PubMed DOI PMC
Reeves W.C., Emmons R.W., Hardy J.L. Historical perspectives on California encephalitis virus in California. Prog. Clin. Biol. Res. 1983;123:19–29. PubMed
Beaty B.J., Trent D.W., Roehrig J.T. Virus variation and evolution: mechanisms and epidemiological significance. In: Monath T.P., editor. The Arboviruses: Edpiemiology and Ecology. Volume 1. CRC Press; Boca Raton, FL, USA: 1988. pp. 59–85.
Bolling R.G., Weaver S.C., Tesh R.B., Vasilakis N. Insect-specific virus discovery: significance for the arbovirus community. Viruses. 2015;7:4911–4928. doi: 10.3390/v7092851. PubMed DOI PMC
Junglen S., Drosten C. Virus diversity and recent insights into virus diversity in arthropods. Curr. Opin. Microbiol. 2013;16:507–513. doi: 10.1016/j.mib.2013.06.005. PubMed DOI PMC
Junglen S. Evolutionary origin of pathogenic arthropod-borne viruses—A case study in the family Bunyaviridae. Curr. Opin. Insect Sci. 2016;16:81–86. doi: 10.1016/j.cois.2016.05.017. PubMed DOI
Shi M., Lin X.-D., Tian J.-H., Chen L.-J., Chen X., Li C.-X., Qin X.-C., Li J., Cao J.-P., Eden J.-S., et al. Redefining the invertebrate RNA virus sphere. Nature. 2016;540:539–543. doi: 10.1038/nature20167. PubMed DOI
Bichaud L., de Lamballerie X., Alkan C., Izri A., Gould E.A., Charrel R.N. Arthropods as a source of RNA viruses. Microb. Pathog. 2014;77:136–141. doi: 10.1016/j.micpath.2014.09.002. PubMed DOI
Hernandez R., Brown D.T., Paredes A. Structural differences observed in arboviruses of the Alphavirus and Flavivirus genera. Adv. Virol. 2014;2014:259382. doi: 10.1155/2014/259382. PubMed DOI PMC
Ballinger M., Buenn J.A., Hay J., Czechowski D., Taylor D.J. Discovery and evolution of bunyavirids in arctic phantom midges and ancient bunyavirid-like sequences in insect genomes. J. Virol. 2014;88:8783–8794. doi: 10.1128/JVI.00531-14. PubMed DOI PMC
Li C.-X., Shi M., Tian J.-H., Lin X.-D., Kang Y.-J., Chen L.-J., Qin X.-C., Xu J., Holmes E.C., Zhang Y.-Z. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife. 2015;4 doi: 10.7554/eLife.05378. PubMed DOI PMC
Wang X., Ren J., Gao Q., Hu Z., Sun Y., Li X., Rowlands D.J., Yin W., Wang J., Stuart D.I., et al. Hepatitis A virus and the origins of picornaviruses. Nature. 2015;517:85–88. doi: 10.1038/nature13806. PubMed DOI PMC
Dudas G., Obbard D.J. Are arthropods at the heart of virus evolution? Elife. 2015;4:E06837. doi: 10.7554/eLife.06837. PubMed DOI PMC
Harrison J.J., Warrilow D., McLean B.J., Watterson D., O’Brien C.A., Colmant A.M., Johansen C.A., Barnard R.T., Hall-Mendelin S., Davis S.S., et al. A new orbivirus isolated from mosquitoes in North-Western Australia shows antigenic and genetic similarity to Corriparta virus but does not replicate in vertebrate cells. Viruses. 2016;88:141. doi: 10.3390/v8050141. PubMed DOI PMC
Shi M., Lin X.-D., Vasilakis N., Tian J.-H., Li C.-X., Chen L.-J., Eastwood G., Diao X.-N., Chen M.-H., Xiao C., et al. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the Flaviviridae and related viruses. J. Virol. 2015;90:659–669. doi: 10.1128/JVI.02036-15. PubMed DOI PMC
Gaunt M.W., Sall A.A., de Lamballerie X., Falconar A.K.I., Dzhivanian T.I., Gould E.A. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J. Gen. Virol. 2001;82:1867–1876. doi: 10.1099/0022-1317-82-8-1867. PubMed DOI
Honig J.E., Osborne J.C., Nichol S.T. The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts. Virology. 2004;318:10–16. doi: 10.1016/j.virol.2003.09.021. PubMed DOI
Belaganahalli M.N., Maan S., Maan N.S., Tesh R.B., Attoui H., Meertens P.P.C. Umatilla virus genome sequencing and phylogenetic analysis: Identification of Stretch Lagoon orbivirus as a new member of the Umatilla virus group. PLoS ONE. 2011;6:e23605. doi: 10.1371/journal.pone.0023605. PubMed DOI PMC
Gubala A., Davis S., Weir S., Melville L., Cowled C., Boyle D. Tibrogargan and Coastal Plain rhabdoviruses: Genomic characterization, evolution of novel genes and seroprevalence in Australian livestock. J. Gen. Virol. 2011;92:2160–2170. doi: 10.1099/vir.0.026120-0. PubMed DOI
Palacios G., Sarji N., Travassos da Rosa A., Guzman H., Yu X., Desai A., Rosen G.E., Hutchison S., Lipkin W.I., Tesh R. Characterization of the Uukuniemi virus group (Phlebovirus: Bunyaviridae): Evidence for seven distinct species. J. Virol. 2013;87:3187–3195. doi: 10.1128/JVI.02719-12. PubMed DOI PMC
Mohd Jaafar F., Belhouchet M., Belaganahalli M., Tesh R.B., Mertens P.P., Attoui H. Full-genome characterization of Orungo, Lebombo, and Changuinola viruses provides evidence for co-evolution of orbiviruses with their arthropod vectors. PLoS ONE. 2014;9:e86392. doi: 10.1371/journal.pone.0086392. PubMed DOI PMC
Walker P.J., Firth C., Widen S.G., Blasdell K.R., Guzman H., Wood T.G., Paradkar P.N., Holmes E.C., Tesh R.B., Vasilakis N. Evolution of genome size and complexity in the Rhabdoviridae. PLoS Pathog. 2015;11:e1004664. doi: 10.1371/journal.ppat.1004664. PubMed DOI PMC
Parker J., Rambaut A., Pybus O.G. Correlating viral phenotypes with phylogeny: Accounting for phylogenetic uncertainty. Infect. Genet. Evol. 2008;8:239–246. doi: 10.1016/j.meegid.2007.08.001. PubMed DOI
Plyusnin A., Sironen T. Evaluation of hantaviruses: Co-speciation with reservoir hosts for more than 100 MYR. Virus Res. 2014;187:22–26. doi: 10.1016/j.virusres.2014.01.008. PubMed DOI
Castel G., Tordo N., Plyusnin A. Estimation of main diversification time-points of hantaviruses using phylogenetic analyses of complete genomes. Virus Res. 2017;233:60–69. doi: 10.1016/j.virusres.2017.03.011. PubMed DOI
Kuno G. The boundaries of arboviruses: Complexities revealed in their host ranges, virus–host interactions and evolutionary relationships. In: Vasilakis N., Gubler D.J., editors. Arbovirues-Molecular Biology, Evolution and Control. Caister Academic Press; Norfolk, UK: 2016. pp. 219–268.
Forrester N.L., Palacios R.B., Tesh R.B., Savji N., Guzman H., Sherman M., Weaver S.C., Lipkin W.I. Genome-scale phylogeny of Alphavirus genus suggests a marine origin. J. Virol. 2012;86:2729–2738. doi: 10.1128/JVI.05591-11. PubMed DOI PMC
Fontenille D., Diallo M., Mondo M., Ndiaye M., Thonnon J. First evidence of natural vertical transmission of yellow fever virus in Ae. aegypti, its epidemic vector. Trans. R. Soc. Trop. Med. 1997;91:533–538. doi: 10.1016/S0035-9203(97)90013-4. PubMed DOI
Mondet B., Vasconcelos P.F.C., Travassos da Rosa A.P.A., Travassos da Rosa E.S., Rodrigues S.G., Travassos da Rosa J.F.S., Bicout D.J. Isolation of yellow fever virus from nulliparous Haemagogus (Haemagogus) janthinomys in eastern Amazonia. Vector-Borne Zoonotic Dis. 2002;2:47–50. doi: 10.1089/153036602760260779. PubMed DOI
Philip C.R., Burgdorferer W. Arthropod vectors as reservoirs of microbial disease agents. Annu. Rev. Entomol. 1961;6:391–412. doi: 10.1146/annurev.en.06.010161.002135. PubMed DOI
L’vov D.K., Shechelkanov M.Y., Alkhovsky P.G., Deryabin P.G. Zoonotic Viruses of Northern Eurasia- Taxonomy and Ecology. Academic Press; Amsterdam, The Netherlands: Boston, MA, USA: Heidellberg, Germany: London, UK: New York, NY, USA: Oxford, UK: Paris, France: San Diego/San Francisco, CA, USA: Singapore: Sydney, Australia: Tokyo, Japan: 2015. p. 274.
Tesh R.B., Calisher C.H. Arbovirology: Back to the future. In: Vasilakis N., Gubler D.J., editors. Arboviruses: Molecular Biology, Evolution and Control. Caister Academic Press; Norfolk, UK: 2016. pp. 385–390.
Turell M.J. Experimental transfer of Karshi (mammalian tick-borne flavivirus group) virus by Ornithodoros ticks >2,900 days after initial virus exposure supports the role of soft ticks as a long-term maintenance mechanism for certain flaviviruses. PLoS Negl. Trop. Dis. 2015;9:e0004012. doi: 10.1371/journal.pntd.0004012. PubMed DOI PMC
Endris R.G., Hess W.R. Experimental transmission of African swine fever virus by the soft tick Ornithodoros (Parlovskyella) macrocanus (Acari: Ixodoidea: Argasidae) J. Med. Entomol. 1992;29:652–656. doi: 10.1093/jmedent/29.4.652. PubMed DOI
Brown C.R., Moore A.T., Young G.R., Komar N. Persistence of Buggy Creek virus (Togaviridae, Alphavirus) for two years in unfed swallow bugs (Hemiptera: Cimicidae: Oeciacus vicarious) J. Med. Enomol. 2010;47:436–441. PubMed PMC
Naq D.K., Brecher M., Kramer L.D. DNA forms of arboviral RNA genomes are generated following infection in mosquito cell cultures. Virology. 2016;498:164–171. PubMed
Goic B., Stapleford K.A., Frangeul L., Doucet A.J., Gausson V., Blanc H., Schemmel- Jofre N., Cristofari G., Lambrechts L., Vignuzzi M., Saleh M.C. Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nat. Commun. 2016;7:12410. doi: 10.1038/ncomms12410. PubMed DOI PMC
Auguste A.J., Lemey P., Pybus O.G., Suchard M.A., Salas R.A., Adesiyun A.A., Barrett A.D., Tesh R.B., Weaver S.C., Carrington C.V.F. Yellow fever virus maintenance in Trinidad and dispersal thoughout the Americas. J. Virol. 2010;84:9967–9977. doi: 10.1128/JVI.00588-10. PubMed DOI PMC
Viana M., Mancy R., Biek R., Cleaveland S., Cross P.C., Lloyd-Smith J.O., Haydon D.T. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 2014;29:270–279. doi: 10.1016/j.tree.2014.03.002. PubMed DOI PMC
Swanepoel R., Leman P.A., Burt F.J., Zachariades N.A., Branck L.E., Ksiazek T. G., Rollin P.E., Zaki S.R., Peters C.J. Experimental inoculation of plants and animals with Ebola virus. Emerg. Infect. Dis. 1996;2:321–325. doi: 10.3201/eid0204.960407. PubMed DOI PMC
Leendertz S.A.J. Testing new hypotheses regarding Ebola virus reservoirs. Viruses. 2016;8:30. doi: 10.3390/v8020030. DOI
Aitken T.H., Kowalski R.W., Beaty B.J., Buckley S.M., Wright J.D., Shope R.E., Miller B.R. Arthropod studies with rabies-related Mokola virus. Am. J. Trop. Med. Hyg. 1984;33:945–952. doi: 10.4269/ajtmh.1984.33.945. PubMed DOI
Varelas-Wesley I., Calisher C.H. Antigenic relationships of flaviviruses with undetermined arthropod-borne status. Am. J. Trop. Med. Hyg. 1982;31:1273–1284. doi: 10.4269/ajtmh.1982.31.1273. PubMed DOI
Kuno G. Host range specificity of flaviviruses: Correlation with in vitro replication. J. Med. Entomol. 2007;44:93–101. doi: 10.1093/jmedent/41.5.93. PubMed DOI
Coggins L. African swine fever virus. Pathogenesis. Prog. Med. Vriol. 1974;18:48–63. PubMed
Viñuela E. African swine fever virus. Curr. Top. Microbiol. Immunol. 1985;116:151–170. PubMed
Wolfe N.D., Kilbourn A.M., Karesh W.B., Rahman H.A., Bosi E.J., Cropp B.C., Andau M., Spielman A., Gubler D.J. Sylvatic transmission of arboviruses among Bornean orangutans. Am. J. Trop. Med. Hyg. 2001;64:310–316. doi: 10.4269/ajtmh.2001.64.310. PubMed DOI
Holmes E.C., Twiddy S.S. The origin, emergence and evolutionary genetics of dengue virus. Infect. Genet. Evol. 2003;3:19–28. doi: 10.1016/S1567-1348(03)00004-2. PubMed DOI
Gubler D.J. Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. In: Gubler D.J., Kuno G., editors. Dengue and Dengue Hemorrhagic Fever. CABI International; Wallingford, UK: 1997. pp. 1–22.
Weaver S.C., Vasilakis N. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral diseases. Infect. Genet. Evol. 2009;9:523–540. doi: 10.1016/j.meegid.2009.02.003. PubMed DOI PMC
Rupprecht C., Kuzmin I., Meslin F. Lyssaviruses and rabies: Current conundrums, concerns, contradictions and controversies. F1000 Res. 2017;6:184. doi: 10.12688/f1000research.10416.1. PubMed DOI PMC
Johnson C.K., Hitchens P.L., Evans T.S., Goldstein T., Thomas K., Clements A., Joly D.O., Wolfe N.D., Daszak P., Karesh W.B., et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 2015;5:14830. doi: 10.1038/srep14830. PubMed DOI PMC
Lobo F.P., Mota B.E.F., Pena S.D.J., Azevedo V., Macedo A.M., Tauch A., Machado C.R., Franco G.R. Virus-host coevolution: Common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS ONE. 2009;4:e6282. doi: 10.1371/journal.pone.0006282. PubMed DOI PMC
Wang H., Liu S., Zhang B., Wei W. Analysis of synonymous codon usage bias of Zika virus and its adaption to the hosts. PLoS ONE. 2016;11:e0166260. doi: 10.1371/journal.pone.0166260. PubMed DOI PMC
Kitchen A., Shackelton L.A., Holmes E.C. Family level phylogenies reveal modes of macroevolution in RNA viruses. Proc. Natl. Acad. Sci. USA. 2011;108:238–243. doi: 10.1073/pnas.1011090108. PubMed DOI PMC
Brault A.C., Powers A.M., Weaver S.C. Vector infection determinants of Venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein. J. Virol. 2002;76:6387–6392. doi: 10.1128/JVI.76.12.6387-6392.2002. PubMed DOI PMC
Tsetsarkin K.A., Weaver S.C. Sequential adaptive mutations enhance efficient vector switching by chikungunya virus and its epidemic emergence. PLoS ONE. 2011;7:e1002412. doi: 10.1371/journal.ppat.1002412. PubMed DOI PMC
Duggal N.K., Bosco-Lauth A., Bowen R.A., Wheeler S.S., Reisen W.K., Felix T.A., Mann B.R., Romo H., Swetnam D.M., Barrett D.T., et al. Evidence for co-evolution of West Nile virus and house sparrows in North America. PLoS Negl. Trop. Dis. 2014;8:e3262. doi: 10.1371/journal.pntd.0003262. PubMed DOI PMC
Vazeille M., Zouache K., Vega-Rúa A., Thiberge J.-M., Caro V., Yébakima A., Mousson L., Piorkowski G., Dauga C., Vaney M.-C., et al. Importance of mosquito “quasi species” in selecting an epidemic arthropod- borne virus. Sci. Rep. 2016;6:29564. doi: 10.1038/srep29564. PubMed DOI PMC
Brown C.R., Moore A.T., O’Brien V.A., Padhi A., Knutie S.A., Young G.R., Komar N. Natural infection of vertebrate hosts by different lineages of Buggy Creek virus (family Togaviridae, genus Alphavirus) Arch. Virol. 2010;155:745–749. doi: 10.1007/s00705-010-0638-8. PubMed DOI PMC
Rico-Hesse R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology. 1990;174:479–493. doi: 10.1016/0042-6822(90)90102-W. PubMed DOI
Holmes E.C. The phylogeography of human viruses. Mol. Ecol. 2004;13:745–756. doi: 10.1046/j.1365-294X.2003.02051.x. PubMed DOI
Vasilakis N., Cardosa J., Diallo M., Holmes E.C., Hanley K.A., Weaver S.C. Letter to the editor. Sylvatic dengue viruses share the pathogenic potential of urban/endemic dengue viruses. J. Virol. 2010;84:3726–3727. doi: 10.1128/JVI.02640-09. PubMed DOI PMC
Dudley S.F. Can yellow fever spread to Asia? An essay on the ecology of mosquito borne disease. J. Trop. Med. Hyg. 1934;37:273–278.
Wasserman S., Tambyah P.A., Lim P.L. Yellow fever cases in Asia: Primed for an epidemic. Int. J. Infect. Dis. 2016;48:98–103. doi: 10.1016/j.ijid.2016.04.025. PubMed DOI
Hindle E. Experimental study of yellow fever. Trans. R. Soc. Trop. Med. Hyg. 1929;12:405–434. doi: 10.1016/S0035-9203(29)90063-8. DOI
Gubler D.J., Novak R., Mitchell C.J. Arthropod vector competence-epidemiological, genetic, and biological considerations. In: Steiner M.W.M., Tabachnick W.J., Rai K.J., Narang S., editors. Recent Development in the Genetics of Insect Disease Vectors. Stipes Publishing Co.; Champaingn, IL, USA: 1982. pp. 343–378.
Simon-Loriene E., Faye C., Prot M., Fall G., Kipela J.-M., Fall I.S., Holmes E.C. Authchthonous Japanese encephalitis with yellow fever coinfection in Africa. N. Engl. J. Med. 2017;376:1483–1485. doi: 10.1056/NEJMc1701600. PubMed DOI
Sasaki T., Higa Y., Bertuso A.G., Isawa H., Takasaki T., Minakawa N., Sawabe K. Susceptibility of indigenous and transplanted mosquito spp. to dengue virus in Japan. Jpn. J. Infect. Dis. 2015;68:425–427. doi: 10.7883/yoken.JJID.2014.511. PubMed DOI
Lambrechts L., Scott T.W., Gubler D.J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 2010;4:e646. doi: 10.1371/journal.pntd.0000646. PubMed DOI PMC
Carey D.E. Chikungunya and dengue: A case of mistaken identity? J. Hist. Med. 1971;26:243–262. doi: 10.1093/jhmas/XXVI.3.243. PubMed DOI
Stallknecht D.E. VSV-NJ on Ossabaw Island, Georgia. The truth is out there. Ann. N. Y. Acad. Sci. 2009;916:431–436. doi: 10.1111/j.1749-6632.2000.tb05322.x. PubMed DOI
Gaudreault N.N., Indran S.V., Bryant P.K., Richt J.A., Wilson W.C. Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines. Front. Microbiol. 2015;6:664. doi: 10.3389/fmicb.2015.00664. PubMed DOI PMC
Harrison A., Newey S., Gilbert L., Haydon D.T., Thirgood S. Culling wildlife hosts to control disease: Mountain hares, red grouse and louping ill virus. J. Appl. Ecol. 2010;47:926–930. doi: 10.1111/j.1365-2664.2010.01834.x. DOI
Gilbert L. Louping ill virus in the UK: A review of the hosts, transmission and ecological consequences of control. Exp. Appl. Acarol. 2016;68:363–374. doi: 10.1007/s10493-015-9952-x. PubMed DOI
Hubálek Z. Emerging human infectious diseases: Anthroponoses, zoonoses, and sapronoses. Emerg. Infect. Dis. 2003;9:403–404. doi: 10.3201/eid0903.020208. PubMed DOI PMC
Weissenböck H., Hubálek Z., Bakonyi T., Nowotny N. Zoonotic mosquito-borne flaviviruses: Worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol. 2008;140:271–280. doi: 10.1016/j.vetmic.2009.08.025. PubMed DOI
Casadevall A., Pirofski L.-A. Host–pathogen interaction: Basic concepts of microbial communication, colonization, infection, and disease. Infect. Immun. 2000;68:6511–6518. doi: 10.1128/IAI.68.12.6511-6518.2000. PubMed DOI PMC
Labadie K., Larcher T., Joubert C., Mannioui A., Delache B., Brochard P., Guigand L., Dureil L., Lebon P., Verrier B., et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J. Clin. Investig. 2010;120:894–906. doi: 10.1172/JCI40104. PubMed DOI PMC
Spielman A., Pollack R.J., Kiszewski A.E., Telford S.R. Issues in public health entomology. Vector-Borne Zoonotic Dis. 2001;1:3–19. doi: 10.1089/153036601750137606. PubMed DOI
Haydon D.T., Cleaveland S., Taylor L.H., Laurenson M.K. Identifying reservoirs of infection: A conceptual and practical challenge. Emerg. Infect. Dis. 2002;8:1468–1473. PubMed PMC
Mackenzie J.S., Drury P., Arthur R.R., Ryan M.J., Grein T., Slattery R., Suri S., Domingo C.T., Bejtullahu A. The global outbreak alert and response network. Glob. Public Health. 2014;9:1023–1039. doi: 10.1080/17441692.2014.951870. PubMed DOI PMC
Moreira-Soto A., Soto-Garita C., Corrales-Aquilar E. Neotropical primary bat cell lines show restricted dengue virus replication. Comp. Immunol. Microbiol. Infect. Dis. 2017;50:101–105. doi: 10.1016/j.cimid.2016.12.004. PubMed DOI
Favoretto S., Araújo D., Oliveira D., Duarte N., Mesquita F., Zanotto P., Durigon E. First detection of Zika virus in neotropical primates in Brazil: A possible new reservoir. bioRxiv. 2016 doi: 10.1101/049395. DOI
Kock R.A. Vertebrate reservoirs and secondary epidemiological cycles of vector-borne diseases. Rev. Sci. Tech. Off. Int. Epizoot. 2015;34:151–163. doi: 10.20506/rst.34.1.2351. PubMed DOI
Althouse B.M., Vasilakis N., Sall A.A., Diallo M., Weaver S.C., Hanley K.A. Potential for Zika virus to establish a sylvatic transmission cycle in the Americas. PLoS Negl. Trop. Dis. 2016;10:e00055. doi: 10.1371/journal.pntd.0005055. PubMed DOI PMC
Mackenzie J.S., Jeggo M. Reservoirs and vectors of emerging viruses. Curr. Opin. Virol. 2013;3:170–179. doi: 10.1016/j.coviro.2013.02.002. PubMed DOI PMC
Garcia M.N., Hasbun R., Murray K.O. Persistence of West Nile virus. Microbes Infect. 2015;17:163–168. doi: 10.1016/j.micinf.2014.12.003. PubMed DOI
Bueno M.G., Martinez N., Abdalla L., Duarte dos Santos C.N., Chame M. Animals in the Zika virus life cycle: What to expect from megadiverse Latin American countries. PLoS Negl. Trop. Dis. 2016 doi: 10.1371/journal.pntd.0005073. PubMed DOI PMC
Bewick S., Agusto F., Calabree J.M., Muturi E.J., Fagan W.F. Epidemiology of La Crosse virus emergence, Appalachian Region, United States. Emerg. Infect. Dis. 2016;22:1921–1929. doi: 10.3201/eid2211.160308. PubMed DOI PMC
Vasilakis N., Weaver S.C. Flavivirus transmission focusing on Zika. Curr. Opin. Virol. 2017;22:30–35. doi: 10.1016/j.coviro.2016.11.007. PubMed DOI PMC
González-Salazar C., Stephens C.R., Sánchez-Cordero V. Predicting the potential role of non-human hosts in Zika virus maintenance. EcoHealth. 2017 doi: 10.1007/s10393-017-1206-4. PubMed DOI PMC
Koolhof I.S., Carver S. Epidemic host community contribution to mosquito-borne disease transmission: Ross River virus. Epidemiol. Infect. 2017;145:656–666. doi: 10.1017/S0950268816002739. PubMed DOI PMC
McCarthy M.K., Morrison T.E. Persistent RNA virus infections: Do PAM PS drive chronic disease? Curr. Opin. Virol. 2017;23:8–15. doi: 10.1016/j.coviro.2017.01.003. PubMed DOI PMC
Cardona Maya W.D., Du Plessis S.S., Velilla P.A. Semen as virus reservoir? J. Assist. Reprod. Genet. 2016;33:1255–1256. doi: 10.1007/s10815-016-0747-8. PubMed DOI PMC
Wilson A.J., Morgan E.R., Booth M., Norman R., Perkins S.E., Hauffe H.C., Mideo N., Antonovics J., McCallum H., Fenton A. What is a vector? Philos. Trans. R. Soc. B. 2017;372:20160085. doi: 10.1098/rstb.2016.0085. PubMed DOI PMC
Reeves W.C. Perspectives and predictions following the St. Louis encephalitis outbreak in Southern California. Proc. Pap. 53rd Ann. Calif. Mosq. Vector Control Assoc. 1986;53:30–31.