Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality?

. 2017 Jul 13 ; 9 (7) : . [epub] 20170713

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28703771

The rapid succession of the pandemic of arbovirus diseases, such as dengue, West Nile fever, chikungunya, and Zika fever, has intensified research on these and other arbovirus diseases worldwide. Investigating the unique mode of vector-borne transmission requires a clear understanding of the roles of vertebrates. One major obstacle to this understanding is the ambiguity of the arbovirus definition originally established by the World Health Organization. The paucity of pertinent information on arbovirus transmission at the time contributed to the notion that vertebrates played the role of reservoir in the arbovirus transmission cycle. Because this notion is a salient feature of the arbovirus definition, it is important to reexamine its validity. This review addresses controversial issues concerning vertebrate reservoirs and their role in arbovirus persistence in nature, examines the genesis of the problem from a historical perspective, discusses various unresolved issues from multiple points of view, assesses the present status of the notion in light of current knowledge, and provides options for a solution to resolve the issue.

Zobrazit více v PubMed

World Health Organization . Arthropod-Borne and Rodent-Borne Viral Diseases. WHO; Geneva, Switzerland: 1985. pp. 1–116. A report of a WHO scientific group. PubMed

Scott T.W. Vertebrate host ecology. In: Monath T.P., editor. The Arboviruses: Epidemiology and Ecology. Volume 2. CRC Press; Boca Raton, FL, USA: 1988. pp. 257–280.

Reisen W.K. North American mosquito-borne arboviruses: Questions of persistence and amplification. Bull. Soc. Vector Ecol. 1990;15:11–21.

Nuttall P.A., Labuda M. Tick-borne encephalitis subgroup. In: Sonenshine D.E., Mather T.N., editors. Ecological Dynamics of Tick-Borne Zoonoses. Oxford University Press; New York, NY, USA: 1994. pp. 351–391.

Kuno G., Chang G.J. Biological transmission of arboviruses: Reexamination and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin. Microbiol. Rev. 2005;18:608–637. doi: 10.1128/CMR.18.4.608-637.2005. PubMed DOI PMC

Lord C.C., Rutledge C.R., Tabachnick W.J. Relationships between host viremia and vector susceptibility for arboviruses. J. Med. Entomol. 2006;43:623–630. doi: 10.1093/jmedent/43.3.623. PubMed DOI PMC

World Health Organization . Arboviruses and Human Disease. Report of a WHO Scientific Group. WHO; Geneva, Switzerland: 1967. pp. 5–84. PubMed

Boyce R.W. Mosquito or Man? The Concept of the Tropical World. E.P. Dutton & Co.; New York, NY, USA: 1909. pp. 41–48.

Hardy A. Animals, disease, and man: Making connections. Perspect. Biol. Med. 2003;46:200–215. doi: 10.1353/pbm.2003.0021. PubMed DOI

Bugher J.C. The mammalian host in yellow fever. In: Strode G.K., editor. Yellow Fever. McGrow-Hill Book Co.; New York, NY, USA: Toronto, ON, Canada: London, UK: 1951. pp. 299–384.

Honigsbaum M. Tipping the balance: Karl Friedrich Meyer, latent infection, and the birth of modern idea of disease ecology. J. Hist. Biol. 2016;49:261–309. doi: 10.1007/s10739-015-9430-7. PubMed DOI

Meyer K.F. The Animal Kingdom, a reservoir of human disease. Ann. Intern. Med. 1948;29:326–347. PubMed

Meyer K.F. Virus diseases of animals transmissible to man. Ann. Intern. Med. 1934;8:552–569.

Taylor R.M. Epidemiology. In: Strode G.K., editor. Yellow Fever. McGraw-Hill Book Co.; New York, NY, USA: Toronto, ON, Canada: London, UK: 1951. pp. 427–538.

Reeves W.C. Arbovirologist and Professor, UC Berkeley School of Public Health, an Oral History Conducted in 1990 and 1991 by Sally Smith Hughes. The Bancroft Library, University of California; Berkeley, CA, USA: 1993. p. 193.

Johnson K.M. Professor William C. Reeves: Scholar, teacher, and friend. Am. J. Trop. Med. Hyg. 1987;37(Suppl. 3):S3–S7. doi: 10.4269/ajtmh.1987.37.3S. PubMed DOI

Huff C.G. A proposed classification of disease transmission by arthropods. Science. 1931;74:456–457. doi: 10.1126/science.74.1923.456-a. PubMed DOI

Maramorosch K. Biological transmission of plant viruses by animal vectors. Trans. N. Y. Acad. Sci. 1954;83:234–240. PubMed

Reeves W.C. Arthropods as vectors and reservoirs of animal pathogenic viruses. In: Hallauer C., Meyer K.F., editors. Handbuch der Virusforschung. Springer; Vienna, Austria: 1958. pp. 177–202.

Thomas H.W. Yellow fever: Results of inoculation of cases and report of talk to the society. Trans. R. Soc. Trop. Med. Hyg. 1909;3:59–62. doi: 10.1080/00034983.1910.11685706. DOI

Balfour A. Wild monkeys as reservoir for virus of yellow fever. Lancet. 1914;1:1176–1178. doi: 10.1016/S0140-6736(01)56899-3. DOI

Reeves W.C., Hutson G.A., Bellamy R.E., Scrivani R.P. Chronic latent infections of birds with western equine encephalomyelitis virus. Proc. Soc. Exp. Biol. Med. 1958;97:733–736. doi: 10.3181/00379727-97-23862. PubMed DOI

Luedke A.J., Jones R.H., Walton T.E. Overwintering mechanism for bluetongue virus: Biological recovery of latent virus from a bovine by bites of Culicoides variipennis. Am. J. Trop. Med. Hyg. 1977;26:313–325. doi: 10.4269/ajtmh.1977.26.313. PubMed DOI

Kuno G. Persistence of arboviruses and antiviral antibodies in vertebrate hosts: Its occurrence and impacts. Rev. Med. Virol. 2001;11:165–190. doi: 10.1002/rmv.314. PubMed DOI

Smith W. Mechanisms of Virus Infection. General Considerations. In: Smith W., editor. Mechanisms of Virus Infection. Academic Press; London, UK: New York, NY, USA: 1963. pp. 1–34.

Semenov B.F., Chumikhin S.P., Karmysheva V., Iakovleva N.I. Experiments with West Nile, Sindbis, Bhanja, and Sicilian mosquito fever viruses. Vestn. Akad. Med. Nauk USSR. 1973;28:79–83. PubMed

Abdussalam M. Significance of ecological studies of wild animal reservoirs of zoonoses. Bull. World Health Organ. 1959;21:179–186. PubMed PMC

Mims C.A. The meaning of persistent infections in nature. Bull. World Health Organ. 1975;52:747–751. PubMed PMC

Rodhain F. The idea of natural reservoir in arbovirology. Bull. Soc. Pathol. Exot. 1998;91:279–282. (In French) PubMed

Plowright R.K., Peel A.J., Streicker D.G., Gilbert A.T., McCallum H., Wood J., Baker M.L., Restif O. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations. PLoS Negl. Trop. Dis. 2016;10:e0004796. doi: 10.1371/journal.pntd.0004796. PubMed DOI PMC

Ahmed R., Morrison L.A., Knipe D.M. Viral persistence. In: Nathanson N., Ahmed R., Gonzalez-Scarano F., Griffin D.E., Holmes K.V., Murphy F.A., Robinson H.L., editors. Viral Pathogens. Lippincott-Raven; New York, NY, USA: 1997. pp. 181–205.

Eklund C.M. The ecology of mosquito borne viruses. Annu. Rev. Microbiol. 1953;7:339–360. doi: 10.1146/annurev.mi.07.100153.002011. PubMed DOI

Doherty R.L. Viruses, mosquitoes, and epidemics. Qld. Health. 1964;1:1–9.

Andrewes C.H. Factors in virus evolution. Adv. Virus Res. 1957;4:1–24. PubMed

Reeves W.C. Overwintering of arboviruses. In: Reeves W.C., Asman S.M., Hardy J.L., Milby M.M., Reisen W.K., editors. Epidemiology and Control of Mosquito-Borne Arboviruses in California, 1943–1987. California Mosquito Control Association, Inc.; Sacramento, CA, USA: 1990. pp. 357–382.

Huhtamo E., Cook S., Moureau G., Uzcátegui N.Y., Sironen T., Kuivanen S., Putkuri N., Kurkela S., Harbach R.E., Firth A.E., et al. Novel flaviviruses from mosquitoes: Mosquito-specific evolutionary lineages within the phylogenetic group of mosquito-borne flaviviruses. Virology. 2014;464–465:320–329. doi: 10.1016/j.virol.2014.07.015. PubMed DOI PMC

Querido J., Echeverria M.G., Marti G.A., Costa R.M., Susevich M.L., Rabinovich J.W., Copa A., Montaño N.A., Garcia L., Cordova M., et al. Seroprevalence of Triatoma virus (Dicistroviridae: Cripaviridae) antibodies in Chagas disease patients. Parasites Vectors. 2015;8:29. doi: 10.1186/s13071-015-0632-9. PubMed DOI PMC

Scotti P.D., Longsworth J.F. Naturally occurring IgM antibodies to a small RNA insect virus in some mammalian sera in New Zealand. Intervirology. 1980;13:186–191. doi: 10.1159/000149124. PubMed DOI

Masembe C., Michuki G., Onyando M., Rumberic C., Norling M., Bishop R.P., Djikeng A., Kemp S.J., Orth A., Skilton R.A., et al. Viral metagenomics demonstrates that domestic pigs are a potential reservoir for Ndumu virus. Virol. J. 2012;9:218. doi: 10.1186/1743-422X-9-218. PubMed DOI PMC

Chung H.C., Nguyen V.G., Goode D., Park C.H., Kim A.R., Moon H.J., Park S.J., Kim H.K., Park B.K. Gouléako and Herbert viruses in pigs, Republic of Korea, 2013. Emerg. Infect. Dis. 2014;20:2072–2075. doi: 10.3201/eid2012.131742. PubMed DOI PMC

Junglen S., Marklewitz M., Zirkel F., Wollny R., Meyer B., Heidemann H., Metzger S., Annan A., Dei D., Leendertz F.H., et al. No evidence of Gouléako and Herbert virus infections in pigs, Cộte d’Ivoire and Ghana. Emerg. Infect. Dis. 2015;21:2190–2193. doi: 10.3201/eid2112.141840. PubMed DOI PMC

Marklewitz M., Zirkel F., Kurth A., Drosten C., Junglen S. Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of pathogenic RNA virus family. Proc. Natl. Acad. Sci. USA. 2015;112:7536–7541. doi: 10.1073/pnas.1502036112. PubMed DOI PMC

Hammon W.M., Reeves W.C. Recent advances in the epidemiology of the arthropod-borne virus encephalitides. Am. J. Public Health Nations. 1945;35:994–1004. doi: 10.2105/AJPH.35.10.994. PubMed DOI PMC

Lord J.S., Gurley E.S., Pulliam J.R.C. Rethinking Japanese encephalitis virus transmission: A framework for implicating host and vector species. PLoS Negl. Trop. Dis. 2015;9:e0004074. doi: 10.1371/journal.pntd.0004074. PubMed DOI PMC

Burton A.N., McLintock J., Rempel J.G. Western equine encephalitis virus in Saskatchewan garter snakes and leopard frogs. Science. 1966;154:1029–1031. doi: 10.1126/science.154.3752.1029. PubMed DOI

Bowen G.S. Prolonged western equine encephalitis viremia in the Texas tortoise (Gopherus berlandieri) Am. J. Trop. Med. Hyg. 1977;26:171–175. doi: 10.4269/ajtmh.1977.26.171. PubMed DOI

Russell R.C. Ross River virus: Ecology and distribution. Annu. Rev. Entomol. 2002;47:1–31. doi: 10.1146/annurev.ento.47.091201.145100. PubMed DOI

Broom A.K., Lindsay M.D.A., Johansen C.A., Wright A.E., Mackenzie J.S. Two possible mechanisms for survival and initiation of Murray Valley encephalitis virus activity in the Kimberley region of Western Australia. Am. J. Trop. Med. Hyg. 1995;53:95–99. doi: 10.4269/ajtmh.1995.53.95. PubMed DOI

Venter G.J., Labuschagne K., Majatladi D., Boikanyo S.N., Lourens C., Ebersohn K., Venter E.H. Culicoides species abundance and potential over-wintering of African horse sickness virus in the Onderstepoort area, Gauteng, South Africa. J. S. Afr. Vet. Assoc. 2014;85:1–6. doi: 10.4102/jsava.v85i1.1102. PubMed DOI

Nelms B.M., Macedo P.A., Kothera L., Savage H.M., Reisen W.K. Overwintering biology of Culex (Diptera: Culicidae) mosquitoes in the Sacramento Valley of California. J. Med. Entomol. 2013;50:773–790. doi: 10.1603/ME12280. PubMed DOI PMC

Kumm H.W. Yellow fever transmission experiments with South American bats. Ann. Trop. Med. Parasistol. 1932;26:207–213. doi: 10.1080/00034983.1932.11684716. DOI

Sulkin S.E. The bats as a reservoir of viruses in nature. Prog. Med. Virol. 1962;4:157–207.

Le Lay-Rogues G., Chastel C. Virus des chiropteres transmis ou non par arthropods. Med. Trop. 1986;46:389–395. PubMed

Geevarghese G., Banerjee K. Role of bats in the natural cycle of arboviruses. Curr. Sci. 1990;59:26–31.

Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006;19:531–545. doi: 10.1128/CMR.00017-06. PubMed DOI PMC

Gebhardt L.P., Stanton G.J. The role of poikilothermic hosts as virus reservoirs. Jpn. J. Med. Sci. Biol. 1967;20:30–34. PubMed

Chamberlain R.W. Epidemiology of arthropod-borne togaviruses: The role of arthropods as hosts and vectors and of vertebrate hosts in natural transmission cycles. In: Schlesinger R.W., editor. The Togaviruse: Biology, Structure, Replication. Academic Press; New York, NY, USA: London, UK: Toronto, ON, Canada: Sydney, Australia: San Francisco, CA, USA: 1980. pp. 175–227.

Reeves W.C. Overwintering of arboviruses. Prog. Med. Virol. 1974;17:193–220. PubMed

Hardy J.L., Reeves W.C. Experimental studies on infection in vertebrate hosts. In: Reeves W.C., Asman S.M., Hardy J.L., Milby M.M., Reisen W.K., editors. Epidemiology and Control of Mosquito-Borne Arboviruses in California, 1943–1987. Mosquito and Vector Control Association of California Inc.; Sacramento, CA, USA: 1990. pp. 66–127.

Melville L.F., Hunt N.T., Davis S.S., Weir R.P. Bluetongue virus does not persist in naturally infected cattle. Vet. Ital. 2004;40:502–507. PubMed

Walton T.E. The history of bluetongue and a current global overview. Vet. Ital. 2004;40:31–38. PubMed

Owen J.C., Moore F.R., Williams A.J., Ward M.P., Beveroth T.A., Miller E.A., Wilson L.C., Morley V.J., Abbey-Lee R.N., Veeneman B.A., et al. Test of recrudescence hypothesis for overwintering of West Nile virus in gray catbirds. J. Med. Entomol. 2010;47:451–457. doi: 10.1093/jmedent/47.3.451. PubMed DOI

Collins D.L. Arthropod-borne viral encephalitides. In: Hull T.G., editor. Diseases Transmitted from Animals to Man. Charles C. Thomas Publisher; Springfield, IL, USA: 1963. pp. 731–773.

Downs W.G. Arboviruses: Epidemiological considerations. In: Mudd S, editor. Infectious Agents and Host Reactions. W.B. Saunders Co.; Philadelphia, PA, USA: 1970. pp. 538–555.

Reeves W.C. Mosquitoes and virus diseases. In: Maramorosch K., editor. Biological Transmission of Diseases Agents. Academic Press; New York, NY, USA: London, UK: 1962. pp. 75–82.

Chamberlain R.W. Arbovirology—Then and now. Am. J. Trop. Med. Hyg. 1982;31:430–437. doi: 10.4269/ajtmh.1982.31.430. PubMed DOI

Johnson H.N. Foreword. In: Steele J.H., Beran G.W., editors. CRC Handbook Series in Zoonoses. Section B: Viral Zoonoses. Volume 1 CRC Press; Boca Raton, FL, USA: 1981.

World Health Organization . Joint FAO/WHO Expert Committee on Zoonoses. WHO; Geneva, Switzerland: 1967. p. 68. PubMed

Muul I. Mammalian ecology and epidemiology of zoonoses. Science. 1970;175:1275–1279. doi: 10.1126/science.170.3964.1275. PubMed DOI

Meyer K.F. The Zoonoses in Their Relation to Rural Health. University of California Press; Oakland, CA, USA: 1956. p. 49.

Villarreal L.P., Defillippis V.R., Gottlieb K.A. Acute and persistent viral life strategies and their relationship to emerging diseases. Virology. 2000;272:1–6. doi: 10.1006/viro.2000.0381. PubMed DOI

Geoghegan J.L., Senior A.M., Di Giallonardo F., Holmes E.C. Virological factors that increases the transmissibility of emerging human viruses. Proc. Natl. Acad. Sci. USA. 2016;113:4170–4175. doi: 10.1073/pnas.1521582113. PubMed DOI PMC

Gritsun T.S., Frolova T.V., Zhankov A.I., Armesto M., Turner S.L., Frolova M.P., Pogodina V.V., Lashkevich V.A., Gould E.A. Characterization of a Siberian virus isolated from a patient with progressive chronic tick-borne encephalitis. J. Virol. 2003;77:25–36. doi: 10.1128/JVI.77.1.25-36.2003. PubMed DOI PMC

Dumina A.L. Experimental study of the extent to which the tick Ixodes persulcatus becomes infected with Russian spring-summer encephalitis virus as a result of sucking the blood of immune animals. Vopr. Virusol. 1958;3:166–170. (In Russian) PubMed

Nuttall P.A., Labuda M. Dynamics of infection in tick vectors and at the tick-host interface. Adv. Virus Res. 2003;60:233–272. PubMed

Wheeler S.S., Vineyard M.P., Barker C.M., Reisen W.K. Importance of recrudescent avian infection in West Nile overwintering: Incomplete antibody neutralization of virus allows infrequent vector infection. J. Med. Entomol. 2012;49:895–902. doi: 10.1603/ME11286. PubMed DOI

Cowled C., Melville L., Weir R., Walsh S., Gubala A., Davis S., Boyle D. Persistent and recrudescent infection in cattle following natural infection with Middle Point orbivirus. Arch. Virol. 2012;157:1161–1165. doi: 10.1007/s00705-012-1277-z. PubMed DOI

Price W.H. Chronic disease and virus persistence in mice inoculated with Kyasanur Forest disease virus. Virology. 1966;29:679–681. doi: 10.1016/0042-6822(66)90294-7. PubMed DOI

Gerloff R.K., Larson C.L. Experimental infection of rhesus monkeys with Colorado tick fever virus. Am. J. Pathol. 1959;35:1043–1054. PubMed PMC

Oshiro L.S., Dondero D.V., Emmons R.W., Lennette E.H. The development of Colorado tick fever virus within cells of the haemopoietic system. J. Gen. Virol. 1978;39:73–79. doi: 10.1099/0022-1317-39-1-73. PubMed DOI

Johnson B.K., Varma M.G.R. Infection of Aedes aegypti cell line with infectious arbovirus-antibody complexes. Trans. R. Soc. Trop. Med. Hyg. 1976;70:230–234. doi: 10.1016/0035-9203(76)90045-6. PubMed DOI

Endy T.P., Nisalak A., Chansuttiwat S., Vaughn D.W., Green S., Ennis F.A., Rothman A.L., Libraty D.H. Relationship of pre-existing dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a protective cohort study of DV infection in Thailand. J. Infect. Dis. 2004;189:990–1000. doi: 10.1086/382280. PubMed DOI

Sirichayakul C., Sabchaareon A., Limkittikul K., Yoksan S. Plaque reduction neutralization antibody test does not accurately predict protection against dengue infection in Ratchaburi cohort, Thailand. Virol. J. 2014;11:48. doi: 10.1186/1743-422X-11-48. PubMed DOI PMC

Jiang W.R., Lowe A., Higgs S., Reid H., Gould E.A. Single amino acid codon change detected in louping ill virus antibody-resistant mutants with reduced neurovirulence. J. Gen. Virol. 1993;74:931–935. doi: 10.1099/0022-1317-74-5-931. PubMed DOI

Lok S.M., Ng M.L., Aaskov J. Amino acid and phenotypic changes in dengue 2 virus associated with escape from neutralization by IgM antibody. J. Med. Virol. 2001;65:315–323. doi: 10.1002/jmv.2036. PubMed DOI

Pal P., Fox J.M., Hawman D.W., Huang Y.J., Messaoudi I., Kreklywich C., Denton M., Legasse A.W., Smith P.P., Johnson S., et al. Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes. J. Virol. 2014;88:8213–8226. doi: 10.1128/JVI.01032-14. PubMed DOI PMC

Russell P.K., McCown J.M. Comparison of dengue-2 and dengue-3 virus strains by neutralization tests and identification of a subtype of dengue-3. Am. J. Trop. Med. Hyg. 1972;21:97–99. doi: 10.4269/ajtmh.1972.21.97. PubMed DOI

Leonova G.N., Kondratov I.G., Maystrovskaya O.S., Takashima I., Belikov S.I. Louping ill virus (LIV) in the Far East. Arch. Virol. 2015;160:663–673. doi: 10.1007/s00705-014-2310-1. PubMed DOI

Westaway E.G. The neutralization of arboviruses: II. Neutralization in heterologous virus-serum mixture with four group B arboviruses. Virology. 1965;26:528–537. doi: 10.1016/0042-6822(65)90314-4. PubMed DOI

Calisher C.H., Karabatsos N., Lazuick J.S., Monath T.P., Wolff K.L. Reevaluationof the Western equine encephalitis antigenic complex of alphaviruses (family Togaviridae) as determined by neutralization tests. Am. J. Trop. Med. Hyg. 1988;38:447–452. doi: 10.4269/ajtmh.1988.38.447. PubMed DOI

Takamatsu H., Mellor P.S., Mertens P.P.C., Kirkham P.A., Burroughs J.N., Parkhouse R.M.E. A possible overwintering mechanism for bluetongue virus in the absence of the insect vector. J. Gen. Virol. 2003;84:227–235. doi: 10.1099/vir.0.18705-0. PubMed DOI

Melzi E., Caporale M., Rocchi M., Martin V., Gamino V., di Provido A., Marruchella G., Entrican G., Sevilla N., Palmarini M. Follicular dendritic cell disruption as a novel mechanism of virus- induced immunosuppression. Proc. Natl. Acad. Sci. USA. 2016;113:E6238–E6247. doi: 10.1073/pnas.1610012113. PubMed DOI PMC

Ryzantseva N.V., Zhukova O.B., Novitskii V.V., Pirogova N.P., Lepekhin A.V., Tokareva N.V., Mikhailova O.V., Plotnikova N.N., Sevost’yanova N.V. Structural and functional characteristics of lymphocytes in chronic carriers of tick-borne encephalitis virus. Bull. Exp. Biol. Med. 2002;134:471–473. doi: 10.1023/A:1022698532379. PubMed DOI

Goupil B.A., Mores C.N. A review of chikungunya virus-induced arthralgia: Clinical manifestations, therapeutics, and pathogenesis. Open Rheumatol. J. 2016;10:129–140. PubMed PMC

Journeaux S.F., Brown W.G., Aaskov J.G. Prolonged infection of human synovial cells with Ross River virus. J. Gen. Virol. 1987;68:3165–3169. doi: 10.1099/0022-1317-68-12-3165. PubMed DOI

Soden M., Vasudevan H., Roberts B., Coelen R., Hamlin G., Vasudevan S., La Brody J. Detection of viral ribonucleic acid and histological analysis of inflamed synovium in Ross River virus infection. Arthritis Rheum. 2000;43:365–369. doi: 10.1002/1529-0131(200002)43:2<365::AID-ANR16>3.0.CO;2-E. PubMed DOI

Bakonyi T., Gajdon G.K., Schwing R., Vogl W., Häbich A.-C., Thaller D., Weissenböck H., Rudolf I., Hubálek Z., Nowotny N. Chonic West Nile virus infection in kea (Nestor notabilis) Vet. Microbiol. 2015;183:135–139. doi: 10.1016/j.vetmic.2015.12.012. PubMed DOI

Ravi V., Desai A.S., Shenoy P.K., Satischechandra P., Chandramuki A., Gourie-Devi M. Persistence of Japanese encephalitis virus in the human nervous system. J. Med. Virol. 1993;40:326–329. doi: 10.1002/jmv.1890400412. PubMed DOI

Zhdanov V.M. Integration of viral genomes. Nature. 1975;256:471–473. doi: 10.1038/256471a0. PubMed DOI

Suhrbier A., Jaffar-Bandjee M.-C., Gasque P. Arthritogenic alphaviruses—An overview. Nat. Rev. Rheumatol. 2012;8:420–429. doi: 10.1038/nrrheum.2012.64. PubMed DOI

Katzourakis A., Gifford R.J. Endogenous viral elements in animal genomes. PloS Genet. 2010;6:e1001191. doi: 10.1371/journal.pgen.1001191. PubMed DOI PMC

Vögtlin A., Hoffmann M.A., Nenninger C., Renzuello S., Steinrigl A., Loitsch A., Schwermer H., Kaufmann C., Thür B. Long-term infection of goats with bluetongue virus serotype 25. Vet. Microbiol. 2013;166:165–173. doi: 10.1016/j.vetmic.2013.06.001. PubMed DOI

Murray K., Walker C., Herrington E., Lewis J.A., McCormick J., Beasley D.W., Tesh R.B., Fisher-Hoch S. Persistent infection with West Nile virus years after initial infection. J. Infect. Dis. 2010;201:2–4. doi: 10.1086/648731. PubMed DOI PMC

Wheeler S.S., Langevin S.A., Brault A.C., Woods L., Carroll B.D., Reisen W.K. Detection of persistent West Nile virus RNA in experimentally and naturally infected avian hosts. Am. J. Trop. Med. Hyg. 2012;87:559–564. doi: 10.4269/ajtmh.2012.11-0654. PubMed DOI PMC

Yamanishi S., Yamanaka Y., Kameyama T., Miki K., Miyamoto C., Takashima I. Detection of Japanese encephalitis virus genome in mononuclear cells from blood and spleen of swine. J. Jpn. Vet. Med. Assoc. 1997;50:731–734. doi: 10.12935/jvma1951.50.731. (In Japanese) DOI

Bakhavalova V.N., Potapova O.F., Morozova O.V. Vertical transmission of tick-borne encephalitis virus between generations of adapted reservoir small rodents. Virus Res. 2008;140:172–178. doi: 10.1016/j.virusres.2008.12.001. PubMed DOI

Gibney K.B., Lanciotti R.S., Sejvar J.J., Nugent C.T., Linnen J.M., Delory M.J., Lehman J.A., Boswell E.N., Staples J.E., Fischer M. West Nile virus RNA not detected in urine of 40 people tested 6 years after acute West Nile virus. J. Infect. Dis. 2011;203:344–347. doi: 10.1093/infdis/jiq057. PubMed DOI PMC

Lancaster M.U., Hoggetts S.I., Mackenzie J.S., Urosevic M. Characterization of defective viral RNA produced during persistent infection of vero cells with Murray Valley encephalitis virus. J. Virol. 1998;72:2474–2482. PubMed PMC

Honda T., Tomonaga K. Endogenous non-retroviral RNA virus elements evidence a novel type of antiviral immunity. Mob. Gen. Elem. 2016;6:e1165785. doi: 10.1080/2159256X.2016.1165785. PubMed DOI PMC

Wheeler S.S., Vineyard M.P., Woods L.W., Reisen W.K. Dynamics of West Nile virus persistence in house sparrows (Passer domesticus) PLoS Negl. Trop. Dis. 2012;6:e1860. doi: 10.1371/journal.pntd.0001860. PubMed DOI PMC

Nicastri E., Castilletti C., Liuzzi G., Ianetta M., Capobianchi M.R., Ippolito G. Persistent detection of Zika virus RNA in semen six months after symptom onset in a traveler returning from Haiti to Italy, February, 2016. Eur. Surveill. 2016;21:30314. doi: 10.2807/1560-7917.ES.2016.21.32.30314. PubMed DOI PMC

Bhatnagar J., Rabeneck D.B., Martines R.B., Reagan-Steiner S., Ermias Y., Estetter L.B.C., Suzuki T., Ritter J., Keating M.K., Hale G., et al. Zika virus RNA replication and persistence in brain and placental tissue. Emerg. Infect. Dis. 2017;23:405–414. doi: 10.3201/eid2303.161499. PubMed DOI PMC

Driggers R.W., Ho C.-Y., Korhonen E.M., Kuivanen S., Jääkeläinen A.J., Smura T., Rosenberg A., Hill D.A., DeBiasi R.L., Vezina G., et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 2016;274:2142–2151. doi: 10.1056/NEJMoa1601824. PubMed DOI

Duggal N.K., Ritter J.M., Pestorius S.E., Zaki S.R., Davis B.S., Chang G.J., Bowen R.A., Brault A.C. Frequent Zika virus sexual transmission and prolonged viral RNA shedding in an immunodeficient mouse model. Cell Rep. 2017;18:1751–1760. doi: 10.1016/j.celrep.2017.01.056. PubMed DOI PMC

Kuno G. Transmission of arboviruses without involvement of arthropod vectors. Acta Virol. 2001;45:139–150. PubMed

Gilbert L., Jones L.D., Laurenson M.K., Gould E.A., Reid H.W., Hudson P.J. Ticks need not bite their red grouse hosts to infect them with louping ill virus. Proc. R. Soc. Lond. B (Suppl.) 2004;271:S202–S205. doi: 10.1098/rsbl.2003.0147. PubMed DOI PMC

Benda R. The common tick, Ixodes ricinus L., as a reservoir and vector of tick-borne encephalitis. II. Experimental transmission of tick-borne encephalitis to laboratory animals by ticks of different stages. Hyg. Epidemiol. Microbiol. Immunol. 1958;2:331–344.

Jenny B.W., Erickson G.A., Snyder M.L. Vesicular stomatitis outbreaks and surveillance in the United States. January 1980 through May 1984. Proc. U. S. Anim. Health Assoc. 1984;88:337–345.

Hanson R.P. The natural history of vesicular stomatitis. Bacteriol. Rev. 1952;16:179–203. PubMed PMC

Huyvaert K.P., Moore A.T., Panella N.A., Edwards E.A., Brown M.B., Komar N., Brown C.R. Experimental inoculation of house sparrows (Passer domesticus) with Buggy Creek virus. J. Wildlife Dis. 2008;44:331–340. doi: 10.7589/0090-3558-44.2.331. PubMed DOI

Reisen W.K., Fang Y., Lothrop H.D., Martinez V.M., Wilson J., Occonor P., Carney R., Cahoon-Young B., Shafli M., Brault A.C. Overwintering of West Nile virus in southern California. J. Med. Entomol. 2006;43:344–355. doi: 10.1093/jmedent/43.2.344. PubMed DOI

Dawson J.R., Stone W.B., Ebel G.D., Young D.S., Galinski D.S., Pensabene J.P., Franke M.A., Eidson M., Kramer L.D. Crow deaths caused by West Nile virus during winter. Emerg. Infect. Dis. 2007;13:1912–1914. doi: 10.3201/eid1312.070413. PubMed DOI PMC

Ricklin M.E., García-Nicolás O., Brechbühl D., Python S., Zumkehr B., Nougairede A., Charrel R.N., Posthaus H., Ceverann A., Summerfiled A. Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nat. Commun. 2016;7:10832. doi: 10.1038/ncomms10832. PubMed DOI PMC

Van Vuuren M., Penzhom B.L. Geographic range of vector-borne infections and their vectors: the role of African wildlife. Rev. Sci. Tech. 2015;34:139–149. doi: 10.20506/rst.34.1.2350. PubMed DOI

Sánchez-Vizcaino J.M., Mur L., Bastos A.D., Penrith M.L. New insights into the role of ticks in African swine fever epidemiology. Rev. Sci. Tech. 2015;34:503–511. doi: 10.20506/rst.34.2.2375. PubMed DOI

DeFoliart G.R., Grimstad P.R., Watts D.M. Advances in mosquito-borne arbovirus vector research. Ann. Rev. Entomol. 1987;32:479–506. doi: 10.1146/annurev.en.32.010187.002403. PubMed DOI

Spielman A. Research approaches in the development of interventions against vector-borne infection. J. Exp. Biol. 2006;206:3727–3734. doi: 10.1242/jeb.00677. PubMed DOI

Gubler D.J. The president’s address. Prevention and control of tropical diseases in the 20th century: Back to the field. Am. J. Trop. Med. Hyg. 2001;65:v–xi. doi: 10.4269/ajtmh.2001.65.1. PubMed DOI

Carver S., Bestall A., Jardine A., Ostfeld R.S. Influence of hosts on the ecology of arboviral transmission. Potential mechanisms influencing dengue, Murray Valley encephalitis, and Ross River virus in Australia. Vector-Borne Zoonotic Dis. 2009;9:51–64. doi: 10.1089/vbz.2008.0040. PubMed DOI

Süss J. Epidemiology and ecology of TBE relevant to the production of effective vaccine. Vaccine. 2003;21:S19–S35. doi: 10.1016/S0264-410X(02)00812-5. PubMed DOI

Komar N. West Nile virus: Epidemiology and ecology in North America. Adv. Virus Res. 2003;61:185–234. PubMed

Go Y.Y., Balasuriya U.B.R., Lee C.-K. Zoonotic encephalitides cuased by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clin. Exp. Vaccine Res. 2014;3:58–77. doi: 10.7774/cevr.2014.3.1.58. PubMed DOI PMC

Mackenzie J.S., McKinnon M., Jeggo M. One Health: From concept to practice. In: Yamada A., Kahn L.H., Kaplan B., Monath T.P., Woodall J., Conti L.A., editors. Confronting Emerging Zoonoses: The One Health Paradigm. Springer; Tokyo, Japan: 2014. pp. 163–189.

Clements A.N. The Biology of Mosquitoes. Volume 3. CABI; Wallingford, UK: 2012. Transmission of viruses and interactions with bacteria; pp. 105–106.

Diaz L.A., Nemeth N.M., Bowen R.A., Almiron W.R., Contigiani M.S. Comparison of Argentinean Saint Louis encephalitis virus non-epidemic and epidemic strain infections in an avian model. PLoS Negl. Trop. Dis. 2011;5:e1177. doi: 10.1371/journal.pntd.0001177. PubMed DOI PMC

Huang Z.Y.X., de Boer W.F., van Langevelde F., Olson V., Blackburn T.M., Prins H.H.T. Species’ life-history traits explain interspecific variation in reservoir competence: A possible mechanism underlying the dilution effect. PLoS ONE. 2013;8:e54341. PubMed PMC

Althouse B.A., Guerbois M., Cummings D.A.T., Diop O.M., Faye O., Faye A., Diallo D., Sadio B.D., Sow A., Faye O., et al. Monkey in the middle: Monkeys serve as amplification hosts but not reservoir hosts of sylvatic Chikungunya virus. bioRxiv. 2016 doi: 10.1101/07.9046. DOI

Steele J.H. In: CRC Handbook Series in Zoonoses. Section B: Viral Zoonoses. Steele J.H., Beran G.W., editors. Volume 2 CRC Press; Boca Raton, FL, USA: 1981.

Parrish C.R., Holmes E.C., Morens D.M., Pack E.-C., Burke D.S., Calisher C.H., Laughlin C.A., Saif L.J., Daszak P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 2008;72:457–470. doi: 10.1128/MMBR.00004-08. PubMed DOI PMC

Theiler M., Downs W.G. The Arthropod-Borne Viruses of Vertebrates. Yale University Press; New Haven, CT, USA: London, UK: 1973. p. 578.

Huff C.G. Studies on the evolution of some disease-producing organisms. Q. Rev. Biol. 1938;13:196–206. doi: 10.1086/394557. DOI

Baker A.C. The typical epidemic series. Am. J. Trop. Med. 1943;23:559–566. doi: 10.4269/ajtmh.1943.s1-23.559. DOI

Schlesinger R.W. New opportunities in biological research offered by arthropod cell culture. 1. Some speculations on the possible role of arthropods in the evolution of arboviruses. Curr. Top. Microbiol. 1971;55:241–245. PubMed

Porterfield J.S. Antigenic characteristics and classification of Togaviridae. In: Schlesinger R.W., editor. The Togaviruses—Biology, Structure, Replication. Academic Press; New York, NY, USA: London, UK: 1980. pp. 13–46.

Koblet H. Viral evolution and insects as a possible virologic turning table. In Vitro Cell. Dev. Biol. 1993;29A:274–283. doi: 10.1007/BF02633955. PubMed DOI PMC

Reeves W.C., Emmons R.W., Hardy J.L. Historical perspectives on California encephalitis virus in California. Prog. Clin. Biol. Res. 1983;123:19–29. PubMed

Beaty B.J., Trent D.W., Roehrig J.T. Virus variation and evolution: mechanisms and epidemiological significance. In: Monath T.P., editor. The Arboviruses: Edpiemiology and Ecology. Volume 1. CRC Press; Boca Raton, FL, USA: 1988. pp. 59–85.

Bolling R.G., Weaver S.C., Tesh R.B., Vasilakis N. Insect-specific virus discovery: significance for the arbovirus community. Viruses. 2015;7:4911–4928. doi: 10.3390/v7092851. PubMed DOI PMC

Junglen S., Drosten C. Virus diversity and recent insights into virus diversity in arthropods. Curr. Opin. Microbiol. 2013;16:507–513. doi: 10.1016/j.mib.2013.06.005. PubMed DOI PMC

Junglen S. Evolutionary origin of pathogenic arthropod-borne viruses—A case study in the family Bunyaviridae. Curr. Opin. Insect Sci. 2016;16:81–86. doi: 10.1016/j.cois.2016.05.017. PubMed DOI

Shi M., Lin X.-D., Tian J.-H., Chen L.-J., Chen X., Li C.-X., Qin X.-C., Li J., Cao J.-P., Eden J.-S., et al. Redefining the invertebrate RNA virus sphere. Nature. 2016;540:539–543. doi: 10.1038/nature20167. PubMed DOI

Bichaud L., de Lamballerie X., Alkan C., Izri A., Gould E.A., Charrel R.N. Arthropods as a source of RNA viruses. Microb. Pathog. 2014;77:136–141. doi: 10.1016/j.micpath.2014.09.002. PubMed DOI

Hernandez R., Brown D.T., Paredes A. Structural differences observed in arboviruses of the Alphavirus and Flavivirus genera. Adv. Virol. 2014;2014:259382. doi: 10.1155/2014/259382. PubMed DOI PMC

Ballinger M., Buenn J.A., Hay J., Czechowski D., Taylor D.J. Discovery and evolution of bunyavirids in arctic phantom midges and ancient bunyavirid-like sequences in insect genomes. J. Virol. 2014;88:8783–8794. doi: 10.1128/JVI.00531-14. PubMed DOI PMC

Li C.-X., Shi M., Tian J.-H., Lin X.-D., Kang Y.-J., Chen L.-J., Qin X.-C., Xu J., Holmes E.C., Zhang Y.-Z. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife. 2015;4 doi: 10.7554/eLife.05378. PubMed DOI PMC

Wang X., Ren J., Gao Q., Hu Z., Sun Y., Li X., Rowlands D.J., Yin W., Wang J., Stuart D.I., et al. Hepatitis A virus and the origins of picornaviruses. Nature. 2015;517:85–88. doi: 10.1038/nature13806. PubMed DOI PMC

Dudas G., Obbard D.J. Are arthropods at the heart of virus evolution? Elife. 2015;4:E06837. doi: 10.7554/eLife.06837. PubMed DOI PMC

Harrison J.J., Warrilow D., McLean B.J., Watterson D., O’Brien C.A., Colmant A.M., Johansen C.A., Barnard R.T., Hall-Mendelin S., Davis S.S., et al. A new orbivirus isolated from mosquitoes in North-Western Australia shows antigenic and genetic similarity to Corriparta virus but does not replicate in vertebrate cells. Viruses. 2016;88:141. doi: 10.3390/v8050141. PubMed DOI PMC

Shi M., Lin X.-D., Vasilakis N., Tian J.-H., Li C.-X., Chen L.-J., Eastwood G., Diao X.-N., Chen M.-H., Xiao C., et al. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the Flaviviridae and related viruses. J. Virol. 2015;90:659–669. doi: 10.1128/JVI.02036-15. PubMed DOI PMC

Gaunt M.W., Sall A.A., de Lamballerie X., Falconar A.K.I., Dzhivanian T.I., Gould E.A. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J. Gen. Virol. 2001;82:1867–1876. doi: 10.1099/0022-1317-82-8-1867. PubMed DOI

Honig J.E., Osborne J.C., Nichol S.T. The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts. Virology. 2004;318:10–16. doi: 10.1016/j.virol.2003.09.021. PubMed DOI

Belaganahalli M.N., Maan S., Maan N.S., Tesh R.B., Attoui H., Meertens P.P.C. Umatilla virus genome sequencing and phylogenetic analysis: Identification of Stretch Lagoon orbivirus as a new member of the Umatilla virus group. PLoS ONE. 2011;6:e23605. doi: 10.1371/journal.pone.0023605. PubMed DOI PMC

Gubala A., Davis S., Weir S., Melville L., Cowled C., Boyle D. Tibrogargan and Coastal Plain rhabdoviruses: Genomic characterization, evolution of novel genes and seroprevalence in Australian livestock. J. Gen. Virol. 2011;92:2160–2170. doi: 10.1099/vir.0.026120-0. PubMed DOI

Palacios G., Sarji N., Travassos da Rosa A., Guzman H., Yu X., Desai A., Rosen G.E., Hutchison S., Lipkin W.I., Tesh R. Characterization of the Uukuniemi virus group (Phlebovirus: Bunyaviridae): Evidence for seven distinct species. J. Virol. 2013;87:3187–3195. doi: 10.1128/JVI.02719-12. PubMed DOI PMC

Mohd Jaafar F., Belhouchet M., Belaganahalli M., Tesh R.B., Mertens P.P., Attoui H. Full-genome characterization of Orungo, Lebombo, and Changuinola viruses provides evidence for co-evolution of orbiviruses with their arthropod vectors. PLoS ONE. 2014;9:e86392. doi: 10.1371/journal.pone.0086392. PubMed DOI PMC

Walker P.J., Firth C., Widen S.G., Blasdell K.R., Guzman H., Wood T.G., Paradkar P.N., Holmes E.C., Tesh R.B., Vasilakis N. Evolution of genome size and complexity in the Rhabdoviridae. PLoS Pathog. 2015;11:e1004664. doi: 10.1371/journal.ppat.1004664. PubMed DOI PMC

Parker J., Rambaut A., Pybus O.G. Correlating viral phenotypes with phylogeny: Accounting for phylogenetic uncertainty. Infect. Genet. Evol. 2008;8:239–246. doi: 10.1016/j.meegid.2007.08.001. PubMed DOI

Plyusnin A., Sironen T. Evaluation of hantaviruses: Co-speciation with reservoir hosts for more than 100 MYR. Virus Res. 2014;187:22–26. doi: 10.1016/j.virusres.2014.01.008. PubMed DOI

Castel G., Tordo N., Plyusnin A. Estimation of main diversification time-points of hantaviruses using phylogenetic analyses of complete genomes. Virus Res. 2017;233:60–69. doi: 10.1016/j.virusres.2017.03.011. PubMed DOI

Kuno G. The boundaries of arboviruses: Complexities revealed in their host ranges, virus–host interactions and evolutionary relationships. In: Vasilakis N., Gubler D.J., editors. Arbovirues-Molecular Biology, Evolution and Control. Caister Academic Press; Norfolk, UK: 2016. pp. 219–268.

Forrester N.L., Palacios R.B., Tesh R.B., Savji N., Guzman H., Sherman M., Weaver S.C., Lipkin W.I. Genome-scale phylogeny of Alphavirus genus suggests a marine origin. J. Virol. 2012;86:2729–2738. doi: 10.1128/JVI.05591-11. PubMed DOI PMC

Fontenille D., Diallo M., Mondo M., Ndiaye M., Thonnon J. First evidence of natural vertical transmission of yellow fever virus in Ae. aegypti, its epidemic vector. Trans. R. Soc. Trop. Med. 1997;91:533–538. doi: 10.1016/S0035-9203(97)90013-4. PubMed DOI

Mondet B., Vasconcelos P.F.C., Travassos da Rosa A.P.A., Travassos da Rosa E.S., Rodrigues S.G., Travassos da Rosa J.F.S., Bicout D.J. Isolation of yellow fever virus from nulliparous Haemagogus (Haemagogus) janthinomys in eastern Amazonia. Vector-Borne Zoonotic Dis. 2002;2:47–50. doi: 10.1089/153036602760260779. PubMed DOI

Philip C.R., Burgdorferer W. Arthropod vectors as reservoirs of microbial disease agents. Annu. Rev. Entomol. 1961;6:391–412. doi: 10.1146/annurev.en.06.010161.002135. PubMed DOI

L’vov D.K., Shechelkanov M.Y., Alkhovsky P.G., Deryabin P.G. Zoonotic Viruses of Northern Eurasia- Taxonomy and Ecology. Academic Press; Amsterdam, The Netherlands: Boston, MA, USA: Heidellberg, Germany: London, UK: New York, NY, USA: Oxford, UK: Paris, France: San Diego/San Francisco, CA, USA: Singapore: Sydney, Australia: Tokyo, Japan: 2015. p. 274.

Tesh R.B., Calisher C.H. Arbovirology: Back to the future. In: Vasilakis N., Gubler D.J., editors. Arboviruses: Molecular Biology, Evolution and Control. Caister Academic Press; Norfolk, UK: 2016. pp. 385–390.

Turell M.J. Experimental transfer of Karshi (mammalian tick-borne flavivirus group) virus by Ornithodoros ticks >2,900 days after initial virus exposure supports the role of soft ticks as a long-term maintenance mechanism for certain flaviviruses. PLoS Negl. Trop. Dis. 2015;9:e0004012. doi: 10.1371/journal.pntd.0004012. PubMed DOI PMC

Endris R.G., Hess W.R. Experimental transmission of African swine fever virus by the soft tick Ornithodoros (Parlovskyella) macrocanus (Acari: Ixodoidea: Argasidae) J. Med. Entomol. 1992;29:652–656. doi: 10.1093/jmedent/29.4.652. PubMed DOI

Brown C.R., Moore A.T., Young G.R., Komar N. Persistence of Buggy Creek virus (Togaviridae, Alphavirus) for two years in unfed swallow bugs (Hemiptera: Cimicidae: Oeciacus vicarious) J. Med. Enomol. 2010;47:436–441. PubMed PMC

Naq D.K., Brecher M., Kramer L.D. DNA forms of arboviral RNA genomes are generated following infection in mosquito cell cultures. Virology. 2016;498:164–171. PubMed

Goic B., Stapleford K.A., Frangeul L., Doucet A.J., Gausson V., Blanc H., Schemmel- Jofre N., Cristofari G., Lambrechts L., Vignuzzi M., Saleh M.C. Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nat. Commun. 2016;7:12410. doi: 10.1038/ncomms12410. PubMed DOI PMC

Auguste A.J., Lemey P., Pybus O.G., Suchard M.A., Salas R.A., Adesiyun A.A., Barrett A.D., Tesh R.B., Weaver S.C., Carrington C.V.F. Yellow fever virus maintenance in Trinidad and dispersal thoughout the Americas. J. Virol. 2010;84:9967–9977. doi: 10.1128/JVI.00588-10. PubMed DOI PMC

Viana M., Mancy R., Biek R., Cleaveland S., Cross P.C., Lloyd-Smith J.O., Haydon D.T. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 2014;29:270–279. doi: 10.1016/j.tree.2014.03.002. PubMed DOI PMC

Swanepoel R., Leman P.A., Burt F.J., Zachariades N.A., Branck L.E., Ksiazek T. G., Rollin P.E., Zaki S.R., Peters C.J. Experimental inoculation of plants and animals with Ebola virus. Emerg. Infect. Dis. 1996;2:321–325. doi: 10.3201/eid0204.960407. PubMed DOI PMC

Leendertz S.A.J. Testing new hypotheses regarding Ebola virus reservoirs. Viruses. 2016;8:30. doi: 10.3390/v8020030. DOI

Aitken T.H., Kowalski R.W., Beaty B.J., Buckley S.M., Wright J.D., Shope R.E., Miller B.R. Arthropod studies with rabies-related Mokola virus. Am. J. Trop. Med. Hyg. 1984;33:945–952. doi: 10.4269/ajtmh.1984.33.945. PubMed DOI

Varelas-Wesley I., Calisher C.H. Antigenic relationships of flaviviruses with undetermined arthropod-borne status. Am. J. Trop. Med. Hyg. 1982;31:1273–1284. doi: 10.4269/ajtmh.1982.31.1273. PubMed DOI

Kuno G. Host range specificity of flaviviruses: Correlation with in vitro replication. J. Med. Entomol. 2007;44:93–101. doi: 10.1093/jmedent/41.5.93. PubMed DOI

Coggins L. African swine fever virus. Pathogenesis. Prog. Med. Vriol. 1974;18:48–63. PubMed

Viñuela E. African swine fever virus. Curr. Top. Microbiol. Immunol. 1985;116:151–170. PubMed

Wolfe N.D., Kilbourn A.M., Karesh W.B., Rahman H.A., Bosi E.J., Cropp B.C., Andau M., Spielman A., Gubler D.J. Sylvatic transmission of arboviruses among Bornean orangutans. Am. J. Trop. Med. Hyg. 2001;64:310–316. doi: 10.4269/ajtmh.2001.64.310. PubMed DOI

Holmes E.C., Twiddy S.S. The origin, emergence and evolutionary genetics of dengue virus. Infect. Genet. Evol. 2003;3:19–28. doi: 10.1016/S1567-1348(03)00004-2. PubMed DOI

Gubler D.J. Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. In: Gubler D.J., Kuno G., editors. Dengue and Dengue Hemorrhagic Fever. CABI International; Wallingford, UK: 1997. pp. 1–22.

Weaver S.C., Vasilakis N. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral diseases. Infect. Genet. Evol. 2009;9:523–540. doi: 10.1016/j.meegid.2009.02.003. PubMed DOI PMC

Rupprecht C., Kuzmin I., Meslin F. Lyssaviruses and rabies: Current conundrums, concerns, contradictions and controversies. F1000 Res. 2017;6:184. doi: 10.12688/f1000research.10416.1. PubMed DOI PMC

Johnson C.K., Hitchens P.L., Evans T.S., Goldstein T., Thomas K., Clements A., Joly D.O., Wolfe N.D., Daszak P., Karesh W.B., et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 2015;5:14830. doi: 10.1038/srep14830. PubMed DOI PMC

Lobo F.P., Mota B.E.F., Pena S.D.J., Azevedo V., Macedo A.M., Tauch A., Machado C.R., Franco G.R. Virus-host coevolution: Common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS ONE. 2009;4:e6282. doi: 10.1371/journal.pone.0006282. PubMed DOI PMC

Wang H., Liu S., Zhang B., Wei W. Analysis of synonymous codon usage bias of Zika virus and its adaption to the hosts. PLoS ONE. 2016;11:e0166260. doi: 10.1371/journal.pone.0166260. PubMed DOI PMC

Kitchen A., Shackelton L.A., Holmes E.C. Family level phylogenies reveal modes of macroevolution in RNA viruses. Proc. Natl. Acad. Sci. USA. 2011;108:238–243. doi: 10.1073/pnas.1011090108. PubMed DOI PMC

Brault A.C., Powers A.M., Weaver S.C. Vector infection determinants of Venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein. J. Virol. 2002;76:6387–6392. doi: 10.1128/JVI.76.12.6387-6392.2002. PubMed DOI PMC

Tsetsarkin K.A., Weaver S.C. Sequential adaptive mutations enhance efficient vector switching by chikungunya virus and its epidemic emergence. PLoS ONE. 2011;7:e1002412. doi: 10.1371/journal.ppat.1002412. PubMed DOI PMC

Duggal N.K., Bosco-Lauth A., Bowen R.A., Wheeler S.S., Reisen W.K., Felix T.A., Mann B.R., Romo H., Swetnam D.M., Barrett D.T., et al. Evidence for co-evolution of West Nile virus and house sparrows in North America. PLoS Negl. Trop. Dis. 2014;8:e3262. doi: 10.1371/journal.pntd.0003262. PubMed DOI PMC

Vazeille M., Zouache K., Vega-Rúa A., Thiberge J.-M., Caro V., Yébakima A., Mousson L., Piorkowski G., Dauga C., Vaney M.-C., et al. Importance of mosquito “quasi species” in selecting an epidemic arthropod- borne virus. Sci. Rep. 2016;6:29564. doi: 10.1038/srep29564. PubMed DOI PMC

Brown C.R., Moore A.T., O’Brien V.A., Padhi A., Knutie S.A., Young G.R., Komar N. Natural infection of vertebrate hosts by different lineages of Buggy Creek virus (family Togaviridae, genus Alphavirus) Arch. Virol. 2010;155:745–749. doi: 10.1007/s00705-010-0638-8. PubMed DOI PMC

Rico-Hesse R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology. 1990;174:479–493. doi: 10.1016/0042-6822(90)90102-W. PubMed DOI

Holmes E.C. The phylogeography of human viruses. Mol. Ecol. 2004;13:745–756. doi: 10.1046/j.1365-294X.2003.02051.x. PubMed DOI

Vasilakis N., Cardosa J., Diallo M., Holmes E.C., Hanley K.A., Weaver S.C. Letter to the editor. Sylvatic dengue viruses share the pathogenic potential of urban/endemic dengue viruses. J. Virol. 2010;84:3726–3727. doi: 10.1128/JVI.02640-09. PubMed DOI PMC

Dudley S.F. Can yellow fever spread to Asia? An essay on the ecology of mosquito borne disease. J. Trop. Med. Hyg. 1934;37:273–278.

Wasserman S., Tambyah P.A., Lim P.L. Yellow fever cases in Asia: Primed for an epidemic. Int. J. Infect. Dis. 2016;48:98–103. doi: 10.1016/j.ijid.2016.04.025. PubMed DOI

Hindle E. Experimental study of yellow fever. Trans. R. Soc. Trop. Med. Hyg. 1929;12:405–434. doi: 10.1016/S0035-9203(29)90063-8. DOI

Gubler D.J., Novak R., Mitchell C.J. Arthropod vector competence-epidemiological, genetic, and biological considerations. In: Steiner M.W.M., Tabachnick W.J., Rai K.J., Narang S., editors. Recent Development in the Genetics of Insect Disease Vectors. Stipes Publishing Co.; Champaingn, IL, USA: 1982. pp. 343–378.

Simon-Loriene E., Faye C., Prot M., Fall G., Kipela J.-M., Fall I.S., Holmes E.C. Authchthonous Japanese encephalitis with yellow fever coinfection in Africa. N. Engl. J. Med. 2017;376:1483–1485. doi: 10.1056/NEJMc1701600. PubMed DOI

Sasaki T., Higa Y., Bertuso A.G., Isawa H., Takasaki T., Minakawa N., Sawabe K. Susceptibility of indigenous and transplanted mosquito spp. to dengue virus in Japan. Jpn. J. Infect. Dis. 2015;68:425–427. doi: 10.7883/yoken.JJID.2014.511. PubMed DOI

Lambrechts L., Scott T.W., Gubler D.J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 2010;4:e646. doi: 10.1371/journal.pntd.0000646. PubMed DOI PMC

Carey D.E. Chikungunya and dengue: A case of mistaken identity? J. Hist. Med. 1971;26:243–262. doi: 10.1093/jhmas/XXVI.3.243. PubMed DOI

Stallknecht D.E. VSV-NJ on Ossabaw Island, Georgia. The truth is out there. Ann. N. Y. Acad. Sci. 2009;916:431–436. doi: 10.1111/j.1749-6632.2000.tb05322.x. PubMed DOI

Gaudreault N.N., Indran S.V., Bryant P.K., Richt J.A., Wilson W.C. Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines. Front. Microbiol. 2015;6:664. doi: 10.3389/fmicb.2015.00664. PubMed DOI PMC

Harrison A., Newey S., Gilbert L., Haydon D.T., Thirgood S. Culling wildlife hosts to control disease: Mountain hares, red grouse and louping ill virus. J. Appl. Ecol. 2010;47:926–930. doi: 10.1111/j.1365-2664.2010.01834.x. DOI

Gilbert L. Louping ill virus in the UK: A review of the hosts, transmission and ecological consequences of control. Exp. Appl. Acarol. 2016;68:363–374. doi: 10.1007/s10493-015-9952-x. PubMed DOI

Hubálek Z. Emerging human infectious diseases: Anthroponoses, zoonoses, and sapronoses. Emerg. Infect. Dis. 2003;9:403–404. doi: 10.3201/eid0903.020208. PubMed DOI PMC

Weissenböck H., Hubálek Z., Bakonyi T., Nowotny N. Zoonotic mosquito-borne flaviviruses: Worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol. 2008;140:271–280. doi: 10.1016/j.vetmic.2009.08.025. PubMed DOI

Casadevall A., Pirofski L.-A. Host–pathogen interaction: Basic concepts of microbial communication, colonization, infection, and disease. Infect. Immun. 2000;68:6511–6518. doi: 10.1128/IAI.68.12.6511-6518.2000. PubMed DOI PMC

Labadie K., Larcher T., Joubert C., Mannioui A., Delache B., Brochard P., Guigand L., Dureil L., Lebon P., Verrier B., et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J. Clin. Investig. 2010;120:894–906. doi: 10.1172/JCI40104. PubMed DOI PMC

Spielman A., Pollack R.J., Kiszewski A.E., Telford S.R. Issues in public health entomology. Vector-Borne Zoonotic Dis. 2001;1:3–19. doi: 10.1089/153036601750137606. PubMed DOI

Haydon D.T., Cleaveland S., Taylor L.H., Laurenson M.K. Identifying reservoirs of infection: A conceptual and practical challenge. Emerg. Infect. Dis. 2002;8:1468–1473. PubMed PMC

Mackenzie J.S., Drury P., Arthur R.R., Ryan M.J., Grein T., Slattery R., Suri S., Domingo C.T., Bejtullahu A. The global outbreak alert and response network. Glob. Public Health. 2014;9:1023–1039. doi: 10.1080/17441692.2014.951870. PubMed DOI PMC

Moreira-Soto A., Soto-Garita C., Corrales-Aquilar E. Neotropical primary bat cell lines show restricted dengue virus replication. Comp. Immunol. Microbiol. Infect. Dis. 2017;50:101–105. doi: 10.1016/j.cimid.2016.12.004. PubMed DOI

Favoretto S., Araújo D., Oliveira D., Duarte N., Mesquita F., Zanotto P., Durigon E. First detection of Zika virus in neotropical primates in Brazil: A possible new reservoir. bioRxiv. 2016 doi: 10.1101/049395. DOI

Kock R.A. Vertebrate reservoirs and secondary epidemiological cycles of vector-borne diseases. Rev. Sci. Tech. Off. Int. Epizoot. 2015;34:151–163. doi: 10.20506/rst.34.1.2351. PubMed DOI

Althouse B.M., Vasilakis N., Sall A.A., Diallo M., Weaver S.C., Hanley K.A. Potential for Zika virus to establish a sylvatic transmission cycle in the Americas. PLoS Negl. Trop. Dis. 2016;10:e00055. doi: 10.1371/journal.pntd.0005055. PubMed DOI PMC

Mackenzie J.S., Jeggo M. Reservoirs and vectors of emerging viruses. Curr. Opin. Virol. 2013;3:170–179. doi: 10.1016/j.coviro.2013.02.002. PubMed DOI PMC

Garcia M.N., Hasbun R., Murray K.O. Persistence of West Nile virus. Microbes Infect. 2015;17:163–168. doi: 10.1016/j.micinf.2014.12.003. PubMed DOI

Bueno M.G., Martinez N., Abdalla L., Duarte dos Santos C.N., Chame M. Animals in the Zika virus life cycle: What to expect from megadiverse Latin American countries. PLoS Negl. Trop. Dis. 2016 doi: 10.1371/journal.pntd.0005073. PubMed DOI PMC

Bewick S., Agusto F., Calabree J.M., Muturi E.J., Fagan W.F. Epidemiology of La Crosse virus emergence, Appalachian Region, United States. Emerg. Infect. Dis. 2016;22:1921–1929. doi: 10.3201/eid2211.160308. PubMed DOI PMC

Vasilakis N., Weaver S.C. Flavivirus transmission focusing on Zika. Curr. Opin. Virol. 2017;22:30–35. doi: 10.1016/j.coviro.2016.11.007. PubMed DOI PMC

González-Salazar C., Stephens C.R., Sánchez-Cordero V. Predicting the potential role of non-human hosts in Zika virus maintenance. EcoHealth. 2017 doi: 10.1007/s10393-017-1206-4. PubMed DOI PMC

Koolhof I.S., Carver S. Epidemic host community contribution to mosquito-borne disease transmission: Ross River virus. Epidemiol. Infect. 2017;145:656–666. doi: 10.1017/S0950268816002739. PubMed DOI PMC

McCarthy M.K., Morrison T.E. Persistent RNA virus infections: Do PAM PS drive chronic disease? Curr. Opin. Virol. 2017;23:8–15. doi: 10.1016/j.coviro.2017.01.003. PubMed DOI PMC

Cardona Maya W.D., Du Plessis S.S., Velilla P.A. Semen as virus reservoir? J. Assist. Reprod. Genet. 2016;33:1255–1256. doi: 10.1007/s10815-016-0747-8. PubMed DOI PMC

Wilson A.J., Morgan E.R., Booth M., Norman R., Perkins S.E., Hauffe H.C., Mideo N., Antonovics J., McCallum H., Fenton A. What is a vector? Philos. Trans. R. Soc. B. 2017;372:20160085. doi: 10.1098/rstb.2016.0085. PubMed DOI PMC

Reeves W.C. Perspectives and predictions following the St. Louis encephalitis outbreak in Southern California. Proc. Pap. 53rd Ann. Calif. Mosq. Vector Control Assoc. 1986;53:30–31.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...