Overexpression of full-length centrobin rescues limb malformation but not male fertility of the hypodactylous (hd) rats
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 HD036477
NICHD NIH HHS - United States
R01 HD037282
NICHD NIH HHS - United States
HD37282
NICHD NIH HHS - United States
HD36477
NICHD NIH HHS - United States
PubMed
23577170
PubMed Central
PMC3620055
DOI
10.1371/journal.pone.0060859
PII: PONE-D-12-39340
Knihovny.cz E-zdroje
- MeSH
- epididymis patologie MeSH
- exprese genu MeSH
- fertilita genetika MeSH
- homeodoménové proteiny genetika MeSH
- krysa rodu Rattus MeSH
- mutace * MeSH
- myši MeSH
- potkani transgenní MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- proteiny teplotního šoku metabolismus MeSH
- spermie růst a vývoj metabolismus MeSH
- testis patologie MeSH
- transport proteinů MeSH
- velikost orgánu genetika MeSH
- vrozené deformity končetin genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- Cntrob protein, rat MeSH Prohlížeč
- homeobox protein HOXA13 MeSH Prohlížeč
- homeodoménové proteiny MeSH
- Odf2 protein, rat MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- proteiny teplotního šoku MeSH
Rat hypodactyly (hd) mutation is characterized by abnormal spermatogenesis and sperm decapitation, limb malformation (missing digits II and III) and growth retardation. We have previously reported centrobin (centrosome BRCA2-interacting protein) truncation at the C-terminus in the hd mutant. Here, we report data from a transgenic rescue experiment carried out to determine a role of centrobin in pathogenesis of hd. The transgenic construct, consisting of full-length-coding cDNA linked to a ubiquitous strong promoter/enhancer combination, was inserted to chromosome 16 into a LINE repeat. No known gene is present in the vicinity of the insertion site. Transgenic centrobin was expressed in all tissues tested, including testis. Transgenic animals show normal body weight and limb morphology as well as average weight of testis and epididymis. Yet, abnormal spermatogenesis and sperm decapitation persisted in the transgenic animals. Western blotting showed the coexistence of full-length and truncated or partially degraded centrobin in sperm of the rescued transgenic animals. Immunocytochemistry showed a buildup of centrobin and ODF2 (outer dense fiber 2) at the sperm decapitation site in the hd mutant and rescued transgenic rats. Additional findings included bulge-like formations and thread-like focal dissociations along the sperm flagellum and the organization of multiple whorls of truncated sperm flagella in the epididymal lumen. We conclude that centrobin is essential for normal patterning of the limb autopod. Centrobin may be required for stabilizing the attachment of the sperm head to flagellum and for maintaining the structural integrity of the sperm flagellum. We postulate that the presence of truncated centrobin, coexisting with full-length centrobin, together with incorrect timing of transgenic centrobin expression may hamper the rescue of fertility in hd male rats.
Zobrazit více v PubMed
Boivin J, Bunting L, Collins JA, Nygren KG (2007) International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod 22: 1506–1512. PubMed
Matzuk MM, Lamb DJ (2008) The biology of infertility: research advances and clinical challenges. Nat Med 14: 1197–1213. PubMed PMC
Liška F (2003) Selected genetic aspects of male infertility–what animal models tell us. Folia Biol (Praha) 49: 129–141. PubMed
Manandhar G, Simerly C, Schatten G (2000) Centrosome reduction during mammalian spermiogenesis. Curr Top Dev Biol 49: 343–363. PubMed
Woolley DM, Fawcett DW (1973) The degeneration and disappearance of the centrioles during the development of the rat spermatozoon. Anat Rec 177: 289–301. PubMed
Kang-Decker N, Mantchev GT, Juneja SC, McNiven MA, van Deursen JM (2001) Lack of acrosome formation in Hrb-deficient mice. Science 294: 1531–1533. PubMed
Mendoza-Lujambio I, Burfeind P, Dixkens C, Meinhardt A, Hoyer-Fender S, et al. (2002) The Hook1 gene is non-functional in the abnormal spermatozoon head shape (azh) mutant mouse. Hum Mol Genet 11: 1647–1658. PubMed
Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, et al. (2002) Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci U S A 99: 11211–11216. PubMed PMC
Kierszenbaum AL, Rivkin E, Tres LL (2011) Cytoskeletal track selection during cargo transport in spermatids is relevant to male fertility. Spermatogenesis 1: 221–230. PubMed PMC
Zou C, Li J, Bai Y, Gunning WT, Wazer DE, et al. (2005) Centrobin: a novel daughter centriole-associated protein that is required for centriole duplication. J Cell Biol 171: 437–445. PubMed PMC
Gudi R, Zou C, Li J, Gao Q (2011) Centrobin-tubulin interaction is required for centriole elongation and stability. J Cell Biol 193: 711–725. PubMed PMC
Jeffery JM, Urquhart AJ, Subramaniam VN, Parton RG, Khanna KK (2010) Centrobin regulates the assembly of functional mitotic spindles. Oncogene 29: 2649–2658. PubMed
Liska F, Gosele C, Rivkin E, Tres L, Cardoso MC, et al. (2009) Rat hd mutation reveals an essential role of centrobin in spermatid head shaping and assembly of the head-tail coupling apparatus. Biol Reprod 81: 1196–1205. PubMed PMC
Baccetti B, Capitani S, Collodel G, Di Cairano G, Gambera L, et al. (2001) Genetic sperm defects and consanguinity. Hum Reprod 16: 1365–1371. PubMed
Emery BR, Thorp C, Malo JW, Carrell DT (2004) Pregnancy from intracytoplasmic sperm injection of a sperm head and detached tail. Fertil Steril 81: 686–688. PubMed
Chemes HE, Puigdomenech ET, Carizza C, Olmedo SB, Zanchetti F, et al. (1999) Acephalic spermatozoa and abnormal development of the head-neck attachment: a human syndrome of genetic origin. Hum Reprod 14: 1811–1818. PubMed
Kamal A, Mansour R, Fahmy I, Serour G, Rhodes C, et al. (1999) Easily decapitated spermatozoa defect: a possible cause of unexplained infertility. Hum Reprod 14: 2791–2795. PubMed
Perotti ME, Giarola A, Gioria M (1981) Ultrastructural study of the decapitated sperm defect in an infertile man. J Reprod Fertil 63: 543–549. PubMed
Toyama Y, Iwamoto T, Yajima M, Baba K, Yuasa S (2000) Decapitated and decaudated spermatozoa in man, and pathogenesis based on the ultrastructure. Int J Androl 23: 109–115. PubMed
Tokuhiro K, Isotani A, Yokota S, Yano Y, Oshio S, et al. (2009) OAZ-t/OAZ3 is essential for rigid connection of sperm tails to heads in mouse. PLoS Genet 5: e1000712. PubMed PMC
Yang K, Meinhardt A, Zhang B, Grzmil P, Adham IM, et al. (2012) The small heat shock protein ODF1/HSPB10 is essential for tight linkage of sperm head to tail and male fertility in mice. Mol Cell Biol 32: 216–225. PubMed PMC
Popova E, Rentzsch B, Bader M, Krivokharchenko A (2008) Generation and characterization of a GFP transgenic rat line for embryological research. Transgenic Res 17: 955–963. PubMed
Kierszenbaum AL, Rivkin E, Tres LL (2003) Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell 14: 4628–4640. PubMed PMC
Rivkin E, Tres LL, Kierszenbaum AL (2008) Genomic origin, processing and developmental expression of testicular outer dense fiber 2 (ODF2) transcripts and a novel nucleolar localization of ODF2 protein. Mol Reprod Dev 75: 1591–1606. PubMed
Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12: 656–664. PubMed PMC
Liska F, Snajdr P, Stricker S, Gosele C, Krenova D, et al. (2010) Impairment of Sox9 expression in limb buds of rats homozygous for hypodactyly mutation. Folia Biol (Praha) 56: 58–65. PubMed
Young RJ, Cooper GW (1983) Dissociation of intermolecular linkages of the sperm head and tail by primary amines, aldehydes, sulphydryl reagents and detergents. J Reprod Fertil 69: 1–10. PubMed
Bao J, Yan W (2012) Male germline control of transposable elements. Biol Reprod 86: 162, 161–114. PubMed PMC
Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13: 335–340. PubMed
Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, et al. (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22: 908–917. PubMed PMC
Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, et al. (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131: 839–849. PubMed
Carmell MA, Girard A, van de Kant HJ, Bourc'his D, Bestor TH, et al. (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12: 503–514. PubMed
Wang Y, Liska F, Gosele C, Sedova L, Kren V, et al. (2010) A novel active endogenous retrovirus family contributes to genome variability in rat inbred strains. Genome Res 20: 19–27. PubMed PMC