Hepcidin bound to α2-macroglobulin reduces ferroportin-1 expression and enhances its activity at reducing serum iron levels

. 2013 Aug 30 ; 288 (35) : 25450-25465. [epub] 20130711

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23846698

Grantová podpora
Canadian Institutes of Health Research - Canada

Odkazy

PubMed 23846698
PubMed Central PMC3757207
DOI 10.1074/jbc.m113.471573
PII: S0021-9258(20)49149-5
Knihovny.cz E-zdroje

Hepcidin regulates iron metabolism by down-regulating ferroportin-1 (Fpn1). We demonstrated that hepcidin is complexed to the blood transport protein, α2-macroglobulin (α2M) (Peslova, G., Petrak, J., Kuzelova, K., Hrdy, I., Halada, P., Kuchel, P. W., Soe-Lin, S., Ponka, P., Sutak, R., Becker, E., Huang, M. L., Suryo Rahmanto, Y., Richardson, D. R., and Vyoral, D. (2009) Blood 113, 6225-6236). However, nothing is known about the mechanism of hepcidin binding to α2M or the effects of the α2M·hepcidin complex in vivo. We show that decreased Fpn1 expression can be mediated by hepcidin bound to native α2M and also, for the first time, hepcidin bound to methylamine-activated α2M (α2M-MA). Passage of high molecular weight α2M·hepcidin or α2M-MA·hepcidin complexes (≈725 kDa) through a Sephadex G-25 size exclusion column retained their ability to decrease Fpn1 expression. Further studies using ultrafiltration indicated that hepcidin binding to α2M and α2M-MA was labile, resulting in some release from the protein, and this may explain its urinary excretion. To determine whether α2M-MA·hepcidin is delivered to cells via the α2M receptor (Lrp1), we assessed α2M uptake and Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells. Interestingly, α2M·hepcidin or α2M-MA·hepcidin demonstrated similar activities at decreasing Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells, indicating that Lrp1 is not essential for Fpn1 regulation. In vivo, hepcidin bound to α2M or α2M-MA did not affect plasma clearance of α2M/α2M-MA. However, serum iron levels were reduced to a significantly greater extent in mice treated with α2M·hepcidin or α2M-MA·hepcidin relative to unbound hepcidin. This effect could be mediated by the ability of α2M or α2M-MA to retard kidney filtration of bound hepcidin, increasing its half-life. A model is proposed that suggests that unlike proteases, which are irreversibly bound to activated α2M, hepcidin remains labile and available to down-regulate Fpn1.

Zobrazit více v PubMed

Ganz T. (2011) Hepcidin and iron regulation, 10 years later. Blood 117, 4425–4433 PubMed PMC

Park C. H., Valore E. V., Waring A. J., Ganz T. (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276, 7806–7810 PubMed

Krause A., Neitz S., Mägert H. J., Schulz A., Forssmann W. G., Schulz-Knappe P., Adermann K. (2000) Leap-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 480, 147–150 PubMed

Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S. J., Moynihan J., Paw B. H., Drejer A., Barut B., Zapata A., Law T. C., Brugnara C., Lux S. E., Pinkus G. S., Pinkus J. L., Kingsley P. D., Palis J., Fleming M. D., Andrews N. C., Zon L. I. (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 PubMed

Nemeth E., Tuttle M. S., Powelson J., Vaughn M. B., Donovan A., Ward D. M., Ganz T., Kaplan J. (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 PubMed

Ramey G., Deschemin J.-C., Durel B., Canonne-Hergaux F., Nicolas G., Vaulont S. (2010) Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica 95, 501–504 PubMed PMC

O'Connor-McCourt M. D., Wakefield L. M. (1987) Latent transforming growth-factor-β in serum: A specific complex with α-macroglobulin. J. Biol. Chem. 262, 14090–14099 PubMed

Niemuller C. A., Randall K. J., Webb D. J., Gonias S. L., LaMarre J. (1995) α2-Macroglobulin conformation determines binding affinity for activin A and plasma clearance of activin A/α2-macroglobulin complex. Endocrinology 136, 5343–5349 PubMed

Dennis P. A., Saksela O., Harpel P., Rifkin D. B. (1989) α2-Macroglobulin is a binding-protein for basic fibroblast growth factor. J. Biol. Chem. 264, 7210–7216 PubMed

Wollenberg G. K., LaMarre J., Rosendal S., Gonias S. L., Hayes M. A. (1991) Binding of tumor-necrosis-factor-α to activated forms of human plasma-α2 macroglobulin. Am. J. Pathol. 138, 265–272 PubMed PMC

Westwood M., Aplin J. D., Collinge I. A., Gill A., White A., Gibson J. M. (2001) α2-Macroglobulin: a new component in the insulin-like growth factor/insulin-like growth factor binding protein-1 axis. J. Biol. Chem. 276, 41668–41674 PubMed

LaMarre J., Wollenberg G. K., Gauldie J., Hayes M. A. (1990) α2-Macroglobulin and serum preferentially counteract the mitoinhibitory effect of transforming growth factor-β-2 in rat hepatocytes. Lab. Invest. 62, 545–551 PubMed

Gonias S. L., Carmichael A., Mettenburg J. M., Roadcap D. W., Irvin W. P., Webb D. J. (2000) Identical or overlapping sequences in the primary structure of human α2-microglobulin are responsible for the binding of nerve growth factor-β, platelet-derived growth factor-bb, and transforming growth factor-β. J. Biol. Chem. 275, 5826–5831 PubMed

Peslova G., Petrak J., Kuzelova K., Hrdy I., Halada P., Kuchel P. W., Soe-Lin S., Ponka P., Sutak R., Becker E., Huang M. L., Suryo Rahmanto Y., Richardson D. R., Vyoral D. (2009) Hepcidin, the hormone of iron metabolism, is bound specifically to α2-macroglobulin in blood. Blood 113, 6225–6236 PubMed

Sari M.-A., Chatterjee S., Artaud I., Deschemin J.-C., Leduc M., Camoin L., Vaulont S., Willemetz A., Canonne-Hergaux F. (2011) Preparation and evaluation of fluorescent and biotinylated hepcidin analogs as hepcidin agonists. Am. J. Hematol. 86, E14

Itkonen O., Stenman U.-H., Parkkinen J., Soliymani R., Baumann M., Hämäläinen E. (2012) Binding of hepcidin to plasma proteins. Clin. Chem. 58, 1158–1160 PubMed

Panyutich A., Ganz T. (1991) Activated α2-macroglobulin is a principal defensin-binding protein. Am. J. Respir. Cell Mol. Biol. 5, 101–106 PubMed

Borth W. (1992) α2-Macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J. 6, 3345–3353 PubMed

Salvesen G. S., Sayers C. A., Barrett A. J. (1981) Further characterization of the covalent linking reaction of α-2-macroglobulin. Biochem. J. 195, 453–461 PubMed PMC

Sottrup-Jensen L. (1989) α-Macroglobulins: Structure, shape, and mechanism of proteinase complex formation. J. Biol. Chem. 264, 11539–11542 PubMed

Mathew S., Arandjelovic S., Beyer W. F., Gonias S. L., Pizzo S. V. (2003) Characterization of the interaction between α2-macroglobulin and fibroblast growth factor-2: The role of hydrophobic interactions. Biochem. J. 374, 123–129 PubMed PMC

Huang M. L., Lane D. J., Richardson D. R. (2011) Mitochondrial mayhem: The mitochondrion as a modulator of iron metabolism and its role in disease. Antioxid. Redox Signal. 15, 3003–3019 PubMed

Mettenburg J. M., Webb D. J., Gonias S. L. (2002) Distinct binding sites in the structure of α-2-macroglobulin mediate the interaction with β-amyloid peptide and growth factors. J. Biol. Chem. 277, 13338–13345 PubMed

Matsuda T., Hirano T., Nagasawa S., Kishimoto T. (1989) Identification of α-2-macroglobulin as a carrier protein for IL-6. J. Immunol. 142, 148–152 PubMed

Huang S. S., O'Grady P., Huang J. S. (1988) Human transforming growth factor-β-α-2-macroglobulin complex is a latent form of transforming growth factor-β. J. Biol. Chem. 263, 1535–1541 PubMed

Delaby C., Pilard N., Gonçalves A. S., Beaumont C., Canonne-Hergaux F. (2005) Presence of the iron exporter ferroportin at the plasma membrane of macrophages is enhanced by iron loading and down-regulated by hepcidin. Blood 106, 3979–3984 PubMed

Knutson M. D., Oukka M., Koss L. M., Aydemir F., Wessling-Resnick M. (2005) Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc. Natl. Acad. Sci. U.S.A. 102, 1324–1328 PubMed PMC

Kratzsch J., Selisko T., Birkenmeier G. (1995) Identification of transformed α2-macroglobulin as a growth hormone-binding protein in human blood. J. Clin. Endocrinol. Metab. 80, 585–590 PubMed

Nurtjahja-Tjendraputra E., Fu D., Phang J. M., Richardson D. R. (2007) Iron chelation regulates cyclin D1 expression via the proteasome: A link to iron deficiency-mediated growth suppression. Blood 109, 4045–4054 PubMed

Richardson D., Baker E. (1992) Two mechanisms of iron uptake from transferrin by melanoma cells. The effect of desferrioxamine and ferric ammonium citrate. J. Biol. Chem. 267, 13972–13979 PubMed

Hall S. W., LaMarre J., Marshall L. B., Hayes M. A., Gonias S. L. (1992) Binding of transforming growth factor-β1 to methylamine-modified α2-macroglobulin and to binary and ternary α2-macroglobulin-proteinase complexes. Biochem. J. 281, 569–575 PubMed PMC

McFarlane A. S. (1958) Efficient trace-labelling of proteins with iodine. Nature 182, 53–53 PubMed

Skogh T. (1982) Overestimate of I-125-labeled protein–uptake from the adult-mouse gut. Gut 23, 1077–1080 PubMed PMC

Richardson D. R., Baker E. (1990) The uptake of iron and transferrin by the human malignant melanoma cell. Biochim. Biophys. Acta 1053, 1–12 PubMed

Iacopetta B. J., Morgan E. H. (1983) The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes. J. Biol. Chem. 258, 9108–9115 PubMed

Crookston K. P., Webb D. J., Lamarre J., Gonias S. L. (1993) Binding of platelet-derived growth factor-bb and transforming growth factor-β1 to α2-macroglobulin in vitro and in vivo–comparison of receptor-recognized and nonrecognized α2-macroglobulin conformations. Biochem. J. 293, 443–450 PubMed PMC

Philip A., O'Connor-McCourt M. D. (1991) Interaction of transforming growth factor-β1 with α2-macroglobulin. Role in transforming growth factor-β1 clearance. J. Biol. Chem. 266, 22290–22296 PubMed

Abboud S., Haile D. J. (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19906–19912 PubMed

Koliaraki V., Marinou M., Samiotaki M., Panayotou G., Pantopoulos K., Mamalaki A. (2008) Iron regulatory and bactericidal properties of human recombinant hepcidin expressed in Pichia pastoris. Biochimie 90, 726–735 PubMed

Knutson M. D., Vafa M. R., Haile D. J., Wessling-Resnick M. (2003) Iron loading and erythrophagocytosis increase ferroportin 1 (fpn1) expression in j774 macrophages. Blood 102, 4191–4197 PubMed

Gonçalves A. S., Muzeau F., Blaybel R., Hetet G., Driss F., Delaby C., Canonne-Hergaux F., Beaumont C. (2006) Wild-type and mutant ferroportins do not form oligomers in transfected cells. Biochem. J. 396, 265–275 PubMed PMC

Yeh K.-Y., Yeh M., Mims L., Glass J. (2009) Iron feeding induces ferroportin 1 and hephaestin migration and interaction in rat duodenal epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G55–G65 PubMed PMC

Canonne-Hergaux F., Donovan A., Delaby C., Wang H.-J., Gros P. (2006) Comparative studies of duodenal and macrophage ferroportin proteins. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G156–G163 PubMed

Nguyen N.-B., Callaghan K. D., Ghio A. J., Haile D. J., Yang F. (2006) Hepcidin expression and iron transport in alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L417–L425 PubMed

Pizzo S. V., Wu S. M. (2000) in Hemostasis and Thromboses: Basic Principles and Clinical Practice (Colman R.W., Hirsch J., Marder V. J., Salzman E. W., eds) 4th Ed., pp. 367–386, Lippincott, Williams & Wilkins, Philadelphia

Colledge N. R., Walker B. R., Ralston S., Davidson S. (eds) (2010) Davidson's Principles and Practice of Medicine, 21st Ed., pp. 459–520, Churchill Livingston/Elsevier, Edinburgh, Scotland

Rivera S., Nemeth E., Gabayan V., Lopez M. A., Farshidi D., Ganz T. (2005) Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood 106, 2196–2199 PubMed PMC

Ganz T., Olbina G., Girelli D., Nemeth E., Westerman M. (2008) Immunoassay for human serum hepcidin. Blood 112, 4292–4297 PubMed

Crookston K. P., Gonias S. L. (1994) The role of cysteine-949 in the binding of transforming growth factor-β1 and transforming growth factor-β2 to α2-macroglobulin. Biochem. Biophys. Res. Commun. 200, 1578–1585 PubMed

LaMarre J., Hayes M. A., Wollenberg G. K., Hussaini I., Hall S. W., Gonias S. L. (1991) An α-2-macroglobulin receptor-dependent mechanism for the plasma clearance of transforming growth factor-β-1 in mice. J. Clin. Invest. 87, 39–44 PubMed PMC

Gonias S. L., Pizzo S. V. (1983) Chemical and structural modifications of α-2-macroglobulin: Effects on receptor-binding and endocytosis studied in an in vivo model. Ann. N.Y. Acad. Sci. 421, 457–471 PubMed

Misra U. K., Gonzalez-Gronow M., Gawdi G., Hart J. P., Johnson C. E., Pizzo S. V. (2002) The role of grp 78 in α2-macroglobulin-induced signal transduction. J. Biol. Chem. 277, 42082–42087 PubMed

Gonias S. L., LaMarre J., Crookston K. P., Webb D. J., Wolf B. B., Lopes M. B., Moses H. L., Hayes M. A. (1994) α2-Macroglobulin and the α2-macroglobulin receptor/lrp–a growth regulatory axis. Ann. N.Y. Acad. Sci. 737, 273–290 PubMed

Ganz T. (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102, 783–788 PubMed

Krieger M., Herz J. (1994) Structures and functions of multiligand lipoprotein receptors: Macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem. 63, 601–637 PubMed

Klüver E., Schulz A., Forssmann W. G., Adermann K. (2002) Chemical synthesis of β-defensins and leap-1/hepcidin. J. Pept. Res. 59, 241–248 PubMed

Nemeth E., Preza G. C., Jung C. L., Kaplan J., Waring A. J., Ganz T. (2006) The N terminus of hepcidin is essential for its interaction with ferroportin: Structure-function study. Blood 107, 328–333 PubMed PMC

De Domenico I., Nemeth E., Nelson J. M., Phillips J. D., Ajioka R. S., Kay M. S., Kushner J. P., Ganz T., Ward D. M., Kaplan J. (2008) The hepcidin-binding site on ferroportin is evolutionarily conserved. Cell Metab. 8, 146–156 PubMed PMC

Leake D. S. (1997) Does an acidic pH explain why low density lipoprotein is oxidised in atherosclerotic lesions? Atherosclerosis 129, 149–157 PubMed

Jordan A., Reichard P. (1998) Ribonucleotide reductases. Annu. Rev. Biochem. 67, 71–98 PubMed

Hocquellet A., le Senechal C., Garbay B. (2012) Importance of the disulfide bridges in the antibacterial activity of human hepcidin. Peptides 36, 303–307 PubMed

Bhattacharjee G., Asplin I. R., Wu S. M., Gawdi G., Pizzo S. V. (2000) The conformation-dependent interaction of α2-macroglobulin with vascular endothelial growth factor. J. Biol. Chem. 275, 26806–26811 PubMed

Overbergh L., Lorent K., Torrekens S., Van Leuven F., Van den Berghe H. (1995) Expression of mouse α-macroglobulins, lipoprotein receptor-related protein, LDL receptor, apolipoprotein-E, and lipoprotein-lipase in pregnancy. J. Lipid Res. 36, 1774–1786 PubMed

Kong W. N., Zhao S. E., Duan X. L., Yang Z., Qian Z. M., Chang Y. Z. (2008) Decreased dmt1 and increased ferroportin 1 expression is the mechanisms of reduced iron retention in macrophages by erythropoietin in rats. J. Cell. Biochem. 104, 629–641 PubMed

Itkonen O., Parkkinen J., Stenman U.-H., Hämäläinen E. (2012) Preanalytical factors and reference intervals for serum hepcidin LC–MS/MS method. Clin. Chim. Acta 413, 696–701 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...