Hepcidin bound to α2-macroglobulin reduces ferroportin-1 expression and enhances its activity at reducing serum iron levels
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Canadian Institutes of Health Research - Canada
PubMed
23846698
PubMed Central
PMC3757207
DOI
10.1074/jbc.m113.471573
PII: S0021-9258(20)49149-5
Knihovny.cz E-zdroje
- Klíčová slova
- Iron, Iron Metabolism, Metalloproteins, Metals, Protein Metal Ion Interaction, α2-Macroglobulin,
- MeSH
- alfa-makroglobuliny genetika metabolismus MeSH
- biologické modely * MeSH
- buněčné linie MeSH
- ferroportin MeSH
- hepcidiny krev genetika MeSH
- LDL-receptory genetika metabolismus MeSH
- lidé MeSH
- multiproteinové komplexy krev genetika MeSH
- myši knockoutované MeSH
- myši MeSH
- nádorové supresorové proteiny genetika metabolismus MeSH
- protein 1 související s LDL-receptory genetika metabolismus MeSH
- proteiny přenášející kationty biosyntéza genetika MeSH
- regulace genové exprese fyziologie MeSH
- železo krev MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alfa-makroglobuliny MeSH
- ferroportin MeSH
- hepcidiny MeSH
- LDL-receptory MeSH
- LRP1 protein, human MeSH Prohlížeč
- Lrp1 protein, mouse MeSH Prohlížeč
- multiproteinové komplexy MeSH
- nádorové supresorové proteiny MeSH
- protein 1 související s LDL-receptory MeSH
- proteiny přenášející kationty MeSH
- železo MeSH
Hepcidin regulates iron metabolism by down-regulating ferroportin-1 (Fpn1). We demonstrated that hepcidin is complexed to the blood transport protein, α2-macroglobulin (α2M) (Peslova, G., Petrak, J., Kuzelova, K., Hrdy, I., Halada, P., Kuchel, P. W., Soe-Lin, S., Ponka, P., Sutak, R., Becker, E., Huang, M. L., Suryo Rahmanto, Y., Richardson, D. R., and Vyoral, D. (2009) Blood 113, 6225-6236). However, nothing is known about the mechanism of hepcidin binding to α2M or the effects of the α2M·hepcidin complex in vivo. We show that decreased Fpn1 expression can be mediated by hepcidin bound to native α2M and also, for the first time, hepcidin bound to methylamine-activated α2M (α2M-MA). Passage of high molecular weight α2M·hepcidin or α2M-MA·hepcidin complexes (≈725 kDa) through a Sephadex G-25 size exclusion column retained their ability to decrease Fpn1 expression. Further studies using ultrafiltration indicated that hepcidin binding to α2M and α2M-MA was labile, resulting in some release from the protein, and this may explain its urinary excretion. To determine whether α2M-MA·hepcidin is delivered to cells via the α2M receptor (Lrp1), we assessed α2M uptake and Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells. Interestingly, α2M·hepcidin or α2M-MA·hepcidin demonstrated similar activities at decreasing Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells, indicating that Lrp1 is not essential for Fpn1 regulation. In vivo, hepcidin bound to α2M or α2M-MA did not affect plasma clearance of α2M/α2M-MA. However, serum iron levels were reduced to a significantly greater extent in mice treated with α2M·hepcidin or α2M-MA·hepcidin relative to unbound hepcidin. This effect could be mediated by the ability of α2M or α2M-MA to retard kidney filtration of bound hepcidin, increasing its half-life. A model is proposed that suggests that unlike proteases, which are irreversibly bound to activated α2M, hepcidin remains labile and available to down-regulate Fpn1.
From the Department of Pathology University of Sydney Sydney New South Wales 2006 Australia
the Lady Davis Institute for Medical Research Montreal Quebec H3T1E2 Canada
Zobrazit více v PubMed
Ganz T. (2011) Hepcidin and iron regulation, 10 years later. Blood 117, 4425–4433 PubMed PMC
Park C. H., Valore E. V., Waring A. J., Ganz T. (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276, 7806–7810 PubMed
Krause A., Neitz S., Mägert H. J., Schulz A., Forssmann W. G., Schulz-Knappe P., Adermann K. (2000) Leap-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 480, 147–150 PubMed
Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S. J., Moynihan J., Paw B. H., Drejer A., Barut B., Zapata A., Law T. C., Brugnara C., Lux S. E., Pinkus G. S., Pinkus J. L., Kingsley P. D., Palis J., Fleming M. D., Andrews N. C., Zon L. I. (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 PubMed
Nemeth E., Tuttle M. S., Powelson J., Vaughn M. B., Donovan A., Ward D. M., Ganz T., Kaplan J. (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 PubMed
Ramey G., Deschemin J.-C., Durel B., Canonne-Hergaux F., Nicolas G., Vaulont S. (2010) Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica 95, 501–504 PubMed PMC
O'Connor-McCourt M. D., Wakefield L. M. (1987) Latent transforming growth-factor-β in serum: A specific complex with α-macroglobulin. J. Biol. Chem. 262, 14090–14099 PubMed
Niemuller C. A., Randall K. J., Webb D. J., Gonias S. L., LaMarre J. (1995) α2-Macroglobulin conformation determines binding affinity for activin A and plasma clearance of activin A/α2-macroglobulin complex. Endocrinology 136, 5343–5349 PubMed
Dennis P. A., Saksela O., Harpel P., Rifkin D. B. (1989) α2-Macroglobulin is a binding-protein for basic fibroblast growth factor. J. Biol. Chem. 264, 7210–7216 PubMed
Wollenberg G. K., LaMarre J., Rosendal S., Gonias S. L., Hayes M. A. (1991) Binding of tumor-necrosis-factor-α to activated forms of human plasma-α2 macroglobulin. Am. J. Pathol. 138, 265–272 PubMed PMC
Westwood M., Aplin J. D., Collinge I. A., Gill A., White A., Gibson J. M. (2001) α2-Macroglobulin: a new component in the insulin-like growth factor/insulin-like growth factor binding protein-1 axis. J. Biol. Chem. 276, 41668–41674 PubMed
LaMarre J., Wollenberg G. K., Gauldie J., Hayes M. A. (1990) α2-Macroglobulin and serum preferentially counteract the mitoinhibitory effect of transforming growth factor-β-2 in rat hepatocytes. Lab. Invest. 62, 545–551 PubMed
Gonias S. L., Carmichael A., Mettenburg J. M., Roadcap D. W., Irvin W. P., Webb D. J. (2000) Identical or overlapping sequences in the primary structure of human α2-microglobulin are responsible for the binding of nerve growth factor-β, platelet-derived growth factor-bb, and transforming growth factor-β. J. Biol. Chem. 275, 5826–5831 PubMed
Peslova G., Petrak J., Kuzelova K., Hrdy I., Halada P., Kuchel P. W., Soe-Lin S., Ponka P., Sutak R., Becker E., Huang M. L., Suryo Rahmanto Y., Richardson D. R., Vyoral D. (2009) Hepcidin, the hormone of iron metabolism, is bound specifically to α2-macroglobulin in blood. Blood 113, 6225–6236 PubMed
Sari M.-A., Chatterjee S., Artaud I., Deschemin J.-C., Leduc M., Camoin L., Vaulont S., Willemetz A., Canonne-Hergaux F. (2011) Preparation and evaluation of fluorescent and biotinylated hepcidin analogs as hepcidin agonists. Am. J. Hematol. 86, E14
Itkonen O., Stenman U.-H., Parkkinen J., Soliymani R., Baumann M., Hämäläinen E. (2012) Binding of hepcidin to plasma proteins. Clin. Chem. 58, 1158–1160 PubMed
Panyutich A., Ganz T. (1991) Activated α2-macroglobulin is a principal defensin-binding protein. Am. J. Respir. Cell Mol. Biol. 5, 101–106 PubMed
Borth W. (1992) α2-Macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J. 6, 3345–3353 PubMed
Salvesen G. S., Sayers C. A., Barrett A. J. (1981) Further characterization of the covalent linking reaction of α-2-macroglobulin. Biochem. J. 195, 453–461 PubMed PMC
Sottrup-Jensen L. (1989) α-Macroglobulins: Structure, shape, and mechanism of proteinase complex formation. J. Biol. Chem. 264, 11539–11542 PubMed
Mathew S., Arandjelovic S., Beyer W. F., Gonias S. L., Pizzo S. V. (2003) Characterization of the interaction between α2-macroglobulin and fibroblast growth factor-2: The role of hydrophobic interactions. Biochem. J. 374, 123–129 PubMed PMC
Huang M. L., Lane D. J., Richardson D. R. (2011) Mitochondrial mayhem: The mitochondrion as a modulator of iron metabolism and its role in disease. Antioxid. Redox Signal. 15, 3003–3019 PubMed
Mettenburg J. M., Webb D. J., Gonias S. L. (2002) Distinct binding sites in the structure of α-2-macroglobulin mediate the interaction with β-amyloid peptide and growth factors. J. Biol. Chem. 277, 13338–13345 PubMed
Matsuda T., Hirano T., Nagasawa S., Kishimoto T. (1989) Identification of α-2-macroglobulin as a carrier protein for IL-6. J. Immunol. 142, 148–152 PubMed
Huang S. S., O'Grady P., Huang J. S. (1988) Human transforming growth factor-β-α-2-macroglobulin complex is a latent form of transforming growth factor-β. J. Biol. Chem. 263, 1535–1541 PubMed
Delaby C., Pilard N., Gonçalves A. S., Beaumont C., Canonne-Hergaux F. (2005) Presence of the iron exporter ferroportin at the plasma membrane of macrophages is enhanced by iron loading and down-regulated by hepcidin. Blood 106, 3979–3984 PubMed
Knutson M. D., Oukka M., Koss L. M., Aydemir F., Wessling-Resnick M. (2005) Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc. Natl. Acad. Sci. U.S.A. 102, 1324–1328 PubMed PMC
Kratzsch J., Selisko T., Birkenmeier G. (1995) Identification of transformed α2-macroglobulin as a growth hormone-binding protein in human blood. J. Clin. Endocrinol. Metab. 80, 585–590 PubMed
Nurtjahja-Tjendraputra E., Fu D., Phang J. M., Richardson D. R. (2007) Iron chelation regulates cyclin D1 expression via the proteasome: A link to iron deficiency-mediated growth suppression. Blood 109, 4045–4054 PubMed
Richardson D., Baker E. (1992) Two mechanisms of iron uptake from transferrin by melanoma cells. The effect of desferrioxamine and ferric ammonium citrate. J. Biol. Chem. 267, 13972–13979 PubMed
Hall S. W., LaMarre J., Marshall L. B., Hayes M. A., Gonias S. L. (1992) Binding of transforming growth factor-β1 to methylamine-modified α2-macroglobulin and to binary and ternary α2-macroglobulin-proteinase complexes. Biochem. J. 281, 569–575 PubMed PMC
McFarlane A. S. (1958) Efficient trace-labelling of proteins with iodine. Nature 182, 53–53 PubMed
Skogh T. (1982) Overestimate of I-125-labeled protein–uptake from the adult-mouse gut. Gut 23, 1077–1080 PubMed PMC
Richardson D. R., Baker E. (1990) The uptake of iron and transferrin by the human malignant melanoma cell. Biochim. Biophys. Acta 1053, 1–12 PubMed
Iacopetta B. J., Morgan E. H. (1983) The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes. J. Biol. Chem. 258, 9108–9115 PubMed
Crookston K. P., Webb D. J., Lamarre J., Gonias S. L. (1993) Binding of platelet-derived growth factor-bb and transforming growth factor-β1 to α2-macroglobulin in vitro and in vivo–comparison of receptor-recognized and nonrecognized α2-macroglobulin conformations. Biochem. J. 293, 443–450 PubMed PMC
Philip A., O'Connor-McCourt M. D. (1991) Interaction of transforming growth factor-β1 with α2-macroglobulin. Role in transforming growth factor-β1 clearance. J. Biol. Chem. 266, 22290–22296 PubMed
Abboud S., Haile D. J. (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19906–19912 PubMed
Koliaraki V., Marinou M., Samiotaki M., Panayotou G., Pantopoulos K., Mamalaki A. (2008) Iron regulatory and bactericidal properties of human recombinant hepcidin expressed in Pichia pastoris. Biochimie 90, 726–735 PubMed
Knutson M. D., Vafa M. R., Haile D. J., Wessling-Resnick M. (2003) Iron loading and erythrophagocytosis increase ferroportin 1 (fpn1) expression in j774 macrophages. Blood 102, 4191–4197 PubMed
Gonçalves A. S., Muzeau F., Blaybel R., Hetet G., Driss F., Delaby C., Canonne-Hergaux F., Beaumont C. (2006) Wild-type and mutant ferroportins do not form oligomers in transfected cells. Biochem. J. 396, 265–275 PubMed PMC
Yeh K.-Y., Yeh M., Mims L., Glass J. (2009) Iron feeding induces ferroportin 1 and hephaestin migration and interaction in rat duodenal epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G55–G65 PubMed PMC
Canonne-Hergaux F., Donovan A., Delaby C., Wang H.-J., Gros P. (2006) Comparative studies of duodenal and macrophage ferroportin proteins. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G156–G163 PubMed
Nguyen N.-B., Callaghan K. D., Ghio A. J., Haile D. J., Yang F. (2006) Hepcidin expression and iron transport in alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L417–L425 PubMed
Pizzo S. V., Wu S. M. (2000) in Hemostasis and Thromboses: Basic Principles and Clinical Practice (Colman R.W., Hirsch J., Marder V. J., Salzman E. W., eds) 4th Ed., pp. 367–386, Lippincott, Williams & Wilkins, Philadelphia
Colledge N. R., Walker B. R., Ralston S., Davidson S. (eds) (2010) Davidson's Principles and Practice of Medicine, 21st Ed., pp. 459–520, Churchill Livingston/Elsevier, Edinburgh, Scotland
Rivera S., Nemeth E., Gabayan V., Lopez M. A., Farshidi D., Ganz T. (2005) Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs. Blood 106, 2196–2199 PubMed PMC
Ganz T., Olbina G., Girelli D., Nemeth E., Westerman M. (2008) Immunoassay for human serum hepcidin. Blood 112, 4292–4297 PubMed
Crookston K. P., Gonias S. L. (1994) The role of cysteine-949 in the binding of transforming growth factor-β1 and transforming growth factor-β2 to α2-macroglobulin. Biochem. Biophys. Res. Commun. 200, 1578–1585 PubMed
LaMarre J., Hayes M. A., Wollenberg G. K., Hussaini I., Hall S. W., Gonias S. L. (1991) An α-2-macroglobulin receptor-dependent mechanism for the plasma clearance of transforming growth factor-β-1 in mice. J. Clin. Invest. 87, 39–44 PubMed PMC
Gonias S. L., Pizzo S. V. (1983) Chemical and structural modifications of α-2-macroglobulin: Effects on receptor-binding and endocytosis studied in an in vivo model. Ann. N.Y. Acad. Sci. 421, 457–471 PubMed
Misra U. K., Gonzalez-Gronow M., Gawdi G., Hart J. P., Johnson C. E., Pizzo S. V. (2002) The role of grp 78 in α2-macroglobulin-induced signal transduction. J. Biol. Chem. 277, 42082–42087 PubMed
Gonias S. L., LaMarre J., Crookston K. P., Webb D. J., Wolf B. B., Lopes M. B., Moses H. L., Hayes M. A. (1994) α2-Macroglobulin and the α2-macroglobulin receptor/lrp–a growth regulatory axis. Ann. N.Y. Acad. Sci. 737, 273–290 PubMed
Ganz T. (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102, 783–788 PubMed
Krieger M., Herz J. (1994) Structures and functions of multiligand lipoprotein receptors: Macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem. 63, 601–637 PubMed
Klüver E., Schulz A., Forssmann W. G., Adermann K. (2002) Chemical synthesis of β-defensins and leap-1/hepcidin. J. Pept. Res. 59, 241–248 PubMed
Nemeth E., Preza G. C., Jung C. L., Kaplan J., Waring A. J., Ganz T. (2006) The N terminus of hepcidin is essential for its interaction with ferroportin: Structure-function study. Blood 107, 328–333 PubMed PMC
De Domenico I., Nemeth E., Nelson J. M., Phillips J. D., Ajioka R. S., Kay M. S., Kushner J. P., Ganz T., Ward D. M., Kaplan J. (2008) The hepcidin-binding site on ferroportin is evolutionarily conserved. Cell Metab. 8, 146–156 PubMed PMC
Leake D. S. (1997) Does an acidic pH explain why low density lipoprotein is oxidised in atherosclerotic lesions? Atherosclerosis 129, 149–157 PubMed
Jordan A., Reichard P. (1998) Ribonucleotide reductases. Annu. Rev. Biochem. 67, 71–98 PubMed
Hocquellet A., le Senechal C., Garbay B. (2012) Importance of the disulfide bridges in the antibacterial activity of human hepcidin. Peptides 36, 303–307 PubMed
Bhattacharjee G., Asplin I. R., Wu S. M., Gawdi G., Pizzo S. V. (2000) The conformation-dependent interaction of α2-macroglobulin with vascular endothelial growth factor. J. Biol. Chem. 275, 26806–26811 PubMed
Overbergh L., Lorent K., Torrekens S., Van Leuven F., Van den Berghe H. (1995) Expression of mouse α-macroglobulins, lipoprotein receptor-related protein, LDL receptor, apolipoprotein-E, and lipoprotein-lipase in pregnancy. J. Lipid Res. 36, 1774–1786 PubMed
Kong W. N., Zhao S. E., Duan X. L., Yang Z., Qian Z. M., Chang Y. Z. (2008) Decreased dmt1 and increased ferroportin 1 expression is the mechanisms of reduced iron retention in macrophages by erythropoietin in rats. J. Cell. Biochem. 104, 629–641 PubMed
Itkonen O., Parkkinen J., Stenman U.-H., Hämäläinen E. (2012) Preanalytical factors and reference intervals for serum hepcidin LC–MS/MS method. Clin. Chim. Acta 413, 696–701 PubMed