The ups and downs of somatic cell nucleus transfer (SCNT) in humans
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu historické články, časopisecké články, práce podpořená grantem, přehledy
PubMed
23881160
PubMed Central
PMC3790123
DOI
10.1007/s10815-013-0053-7
Knihovny.cz E-zdroje
- MeSH
- dějiny 20. století MeSH
- embryonální vývoj MeSH
- lidé MeSH
- oocyty cytologie MeSH
- ovce embryologie genetika MeSH
- techniky jaderného přenosu dějiny MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Achieving successful somatic cell nuclear transfer (SCNT) in the human and subhuman primate relative to other mammals has been questioned for a variety of technical and logistical issues. Here we summarize the gradual evolution of SCNT technology from the perspective of oocyte quality and cell cycle status that has recently led to the demonstration of feasibility in the human for deriving chromosomally normal stem cells lines. With these advances in hand, prospects for therapeutic cloning must be entertained in a conscientious, rigorous, and timely fashion before broad spectrum clinical applications are undertaken.
Zobrazit více v PubMed
Rodriguez-Osorio N, Urrego R, Cibelli JB, Eilertsen K, Memili E. Reprogramming mammalian somatic cells. Theriogenology. 2012;78:1869–1886. doi: 10.1016/j.theriogenology.2012.05.030. PubMed DOI
Narbonne P, Miyamoto K, Gurdon JB. Reprogramming and development in nuclear transfer embryos and in interspecific system. Curr Opin Genet Dev. 2012;22:450–458. doi: 10.1016/j.gde.2012.09.002. PubMed DOI PMC
Noggle S, Fung HL, Gore A, Martinez H, Satriani KG, Prosser R, et al. Human oocytes reprogram somatic cells to a pluripotent state. Nature. 2011;478:70–75. doi: 10.1038/nature10397. PubMed DOI
Yu Y, Yan J, Li M, Yan L, Zhao Y, Lian Y, et al. Effects of combined epidermal growth factor, brain-derived neurotrophic factor and insulin-like growth factor-I on human oocyte maturation and early fertilized and cloned embryo development. Hum Reprod. 2012;27:2146–2159. doi: 10.1093/humrep/des099. PubMed DOI
Tachibana M, Amato P, Sparman M, Gutierrez MM, Tipner-Hedges R, Ma H, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;1228–38. PubMed PMC
Kishigami S, Wakayama S, Van Thuan N, Ohta H, Mizutani E, Hikichi T, et al. Production of cloned mice by somatic cell nuclear transfer. Nat Protoc. 2006;1:125–138. doi: 10.1038/nprot.2006.21. PubMed DOI
Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;386:810–813. doi: 10.1038/385810a0. PubMed DOI
Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012;10:678–684. doi: 10.1016/j.stem.2012.05.005. PubMed DOI
Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc B Biol Sci. 2013;368:20110329. doi: 10.1098/rstb.2011.0329. PubMed DOI PMC
Morris SA, Daley GQ. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res. 2013;23:33–48. doi: 10.1038/cr.2013.1. PubMed DOI PMC
Gurdon JB. Nuclear reprogramming in eggs. Nat Med. 2009;15:1141–1144. doi: 10.1038/nm1009-1141. PubMed DOI
Willadsen SM. Nuclear transplantation in sheep embryos. Nature. 1986;320:63–65. doi: 10.1038/320063a0. PubMed DOI
Sims M, First NL. Production of calves by transfer of nuclei from cultured inner cell mass cell. Proc Natl Acad Sci USA. 1994;91:6143–6147. doi: 10.1073/pnas.91.13.6143. PubMed DOI PMC
Campbell KHS, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996;380:64–66. doi: 10.1038/380064a0. PubMed DOI
Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13:493–504. doi: 10.1038/nrg3245. PubMed DOI PMC
Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savanger F, et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod. 2001;7:425–429. doi: 10.1093/molehr/7.5.425. PubMed DOI
van den Berg IM, Eleveld C, van der Hoeven M, Birnie E, Steegers EAP, Galjaard RJ, et al. Defective deacetylation of histone 4 K12 in human oocytes is associated with advanced maternal age and chromosome misalignment. Hum Reprod. 2011;26:1181–1190. doi: 10.1093/humrep/der030. PubMed DOI
Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Bio. 2013;14:141–152. doi: 10.1038/nrm3531. PubMed DOI
Hwang WS, Ryu YJ, Park JH, Park ES, Lee EG, Koo JM, et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science. 2004;303:1669–1674. doi: 10.1126/science.1094515. PubMed DOI
Hwang WS, Roh SI, Lee BC, Kang SK, Kwon DK, Kim S, et al. Patient-specific embryonic stem cells derived from human SCNT blastocyst. Science. 2005;308:1777–1783. doi: 10.1126/science.1112286. PubMed DOI
Stojkovic M. Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod Biomed Online. 2005;11:226–231. doi: 10.1016/S1472-6483(10)60962-5. PubMed DOI
Hall VJ, Compton D, Stojkovic P, Nesbit M, Herbert M, Murdoch A, et al. Developmental competence of human in vitro aged oocytes as host cells for nuclear transfer. Hum Reprod. 2007;22:52–62. doi: 10.1093/humrep/del345. PubMed DOI
Heindryckx B, De Sutter P, Gerris J, Dhont M, Van der Elst Embryo development after successful somatic cell nuclear transfer to in vitro matured human germinal vesicle oocytes. Hum Reprod. 2007;22:1982–1990. doi: 10.1093/humrep/dem106. PubMed DOI
Chung Y, Bishop CE, Treff NR, Walker SJ, Sandler VM, Becker S, et al. Reprogramming of human somatic cells using human and animal oocytes. Cloning Stem Cells. 2009;11:213–223. doi: 10.1089/clo.2009.0004. PubMed DOI
French AJ, Adams CA, Anderson LS, Kitchen JR, Hughes MR, Wood SH. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells. 2008;26:485–493. doi: 10.1634/stemcells.2007-0252. PubMed DOI
Modlinski JA. Transfer of embryonic nuclei to fertilized mouse eggs and development of tetraploid blastocysts. Nature. 1978;273:466–467. doi: 10.1038/273466a0. PubMed DOI
Surani MAH, Barton SC, Norris ML. Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell. 1986;45:127–136. doi: 10.1016/0092-8674(86)90544-1. PubMed DOI
Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature. 2007;450:497–502. doi: 10.1038/nature06357. PubMed DOI
Fulka J, Jr, Mrazek M, Fulka H, Loi P. Mammalian oocyte therapies. Cloning Stem Cells. 2005;7:183–188.26. doi: 10.1089/clo.2005.7.183. PubMed DOI
Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461:367–372. doi: 10.1038/nature08368. PubMed DOI PMC
Craven L, Tuppen H, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature. 2010;465:82–85. doi: 10.1038/nature08958. PubMed DOI PMC
Tachibana M, Amato P, Sparman M, Woodward J, Melguizo Sanchis D, Ma H, et al. Toward germline gene therapy of inherited mitochondrial diseases. Nature. 2013;493:627–631. doi: 10.1038/nature11647. PubMed DOI PMC
Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature. 2013;493:632–637. doi: 10.1038/nature11800. PubMed DOI PMC