Characteristics and genetic diversity of bioluminescent Shewanella woodyi strains isolated from the Gulf of Izmir, Turkey
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- DNA, Bacterial chemistry genetics MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Luminescence * MeSH
- Molecular Sequence Data MeSH
- Molecular Typing MeSH
- Seawater microbiology MeSH
- Electrophoresis, Gel, Pulsed-Field MeSH
- DNA, Ribosomal chemistry genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Shewanella classification genetics isolation & purification physiology MeSH
- Cluster Analysis MeSH
- Bacterial Typing Techniques MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Turkey MeSH
- Names of Substances
- DNA, Bacterial MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 16S MeSH
The purpose of this study was to isolate bioluminescent strains and to phenotypically and biochemically identify them based on the 16S rRNA gene sequence. 16S rRNA gene sequence analysis of the 11 isolates revealed that they belonged to Shewanella woodyi. Nevertheless, they were determined to exhibit various growth characteristics, enzymatic activities, assimilation of carbon and nitrogen sources, and different characteristics in antibiotic resistance profiles, and also, it was determined that different growth conditions affect the amount of biofilm. Pulsed-field gel electrophoresis (PFGE) analysis of S. woodyi strains performed with SmaI and NotI restriction enzymes revealed that they exhibited restriction fragment pattern homology ranging from 56 to 89 % and from 82 to 94 %, respectively. As a result, PFGE analysis of the genome S. woodyi (as the first record) revealed that although these strains inhabiting the Gulf of Izmir exhibit common characteristics, they also have high levels of genomic polymorphism.
See more in PubMed
Environ Health Prev Med. 2000 Jan;4(4):199-204 PubMed
Folia Microbiol (Praha). 2009 Nov;54(6):499-504 PubMed
Appl Microbiol. 1969 Oct;18(4):688 PubMed
Appl Environ Microbiol. 2001 May;67(5):2319-25 PubMed
Lett Appl Microbiol. 2008 Sep;47(3):187-91 PubMed
Appl Environ Microbiol. 1994 Jun;60(6):1734-8 PubMed
J Clin Microbiol. 1994 Aug;32(8):1963-9 PubMed
Dis Aquat Organ. 2003 Feb 27;53(3):231-40 PubMed
Water Res. 2010 Apr;44(8):2601-9 PubMed
J Clin Microbiol. 1997 Apr;35(4):951-3 PubMed
Environ Microbiol. 2004 Feb;6(2):145-58 PubMed
Int J Syst Evol Microbiol. 2000 Mar;50 Pt 2:427-450 PubMed
J Clin Microbiol. 2003 Oct;41(10):4502-11 PubMed
J Appl Microbiol. 2007 Feb;102(2):548-54 PubMed
Appl Environ Microbiol. 1996 Mar;62(3):918-27 PubMed
Infect Genet Evol. 2010 Oct;10(7):866-75 PubMed
Int J Antimicrob Agents. 2001 May;17(5):383-7 PubMed
FEMS Microbiol Ecol. 2001 May;35(3):223-230 PubMed
J Fish Dis. 2010 Nov;33(11):865-77 PubMed
Int J Syst Evol Microbiol. 2003 Sep;53(Pt 5):1471-1477 PubMed
Annu Rev Genet. 1994;28:117-39 PubMed
Int J Syst Bacteriol. 1997 Oct;47(4):1034-9 PubMed
Nat Rev Microbiol. 2008 Aug;6(8):592-603 PubMed
Toxicon. 2007 Nov;50(6):779-90 PubMed
Appl Microbiol. 1972 Jul;24(1):58-61 PubMed
Int J Syst Evol Microbiol. 2003 Mar;53(Pt 2):577-582 PubMed
FEMS Microbiol Lett. 2006 Mar;256(2):298-303 PubMed
FEMS Microbiol Lett. 2010 Jun;307(2):158-64 PubMed
Int J Syst Evol Microbiol. 2005 Jul;55(Pt 4):1511-1520 PubMed
Appl Environ Microbiol. 2005 Nov;71(11):6689-97 PubMed
Res Microbiol. 1998 Nov-Dec;149(10):711-22 PubMed
Syst Appl Microbiol. 2008 Oct;31(5):358-65 PubMed
Mol Biosyst. 2010 Sep;6(9):1561-4 PubMed
Appl Microbiol. 1971 Dec;22(6):1135-7 PubMed
Int J Syst Bacteriol. 1999 Apr;49 Pt 2:705-24 PubMed
Int J Syst Evol Microbiol. 2004 Jul;54(Pt 4):1083-1087 PubMed
Int J Antimicrob Agents. 2005 Oct;26(4):285-91 PubMed
Int J Syst Evol Microbiol. 2007 Dec;57(Pt 12):2823-2829 PubMed
Clin Microbiol Infect. 2003 Sep;9(9):955-8 PubMed
GENBANK
JF412207, JF412208, JF412209, JF412210, JF412211, JF412212, JF412213, JF412214, JF412254, JF412255, JF412256