Crystal structures of B-DNA dodecamer containing the epigenetic modifications 5-hydroxymethylcytosine or 5-methylcytosine

. 2013 Nov ; 41 (21) : 9891-900. [epub] 20130820

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23963698

5-Hydroxymethylcytosine (5-hmC) was recently identified as a relatively frequent base in eukaryotic genomes. Its physiological function is still unclear, but it is supposed to serve as an intermediate in DNA de novo demethylation. Using X-ray diffraction, we solved five structures of four variants of the d(CGCGAATTCGCG) dodecamer, containing either 5-hmC or 5-methylcytosine (5-mC) at position 3 or at position 9. The observed resolutions were between 1.42 and 1.99 Å. Cytosine modification in all cases influences neither the whole B-DNA double helix structure nor the modified base pair geometry. The additional hydroxyl group of 5-hmC with rotational freedom along the C5-C5A bond is preferentially oriented in the 3' direction. A comparison of thermodynamic properties of the dodecamers shows no effect of 5-mC modification and a sequence-dependent only slight destabilizing effect of 5-hmC modification. Also taking into account the results of a previous functional study [Münzel et al. (2011) (Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Chem. Eur. J., 17, 13782-13788)], we conclude that the 5 position of cytosine is an ideal place to encode epigenetic information. Like this, neither the helical structure nor the thermodynamics are changed, and polymerases cannot distinguish 5-hmC and 5-mC from unmodified cytosine, all these effects are making the former ones non-mutagenic.

Zobrazit více v PubMed

Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324:929–930. PubMed PMC

Tahiliani M, Koh KP, Shen YH, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–935. PubMed PMC

Penn NW, Suwalski R, O'Riley C, Bojanowski K, Yura R. Presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem. J. 1972;126:781–790. PubMed PMC

Münzel M, Globisch D, Brückl T, Wagner M, Welzmiller V, Michalakis S, Müller M, Biel M, Carell T. Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew. Chem. Int. Ed. 2010;49:5375–5377. PubMed

Kriukiene E, Liutkeviciute Z, Klimasauskas S. 5-hydroxymethylcytosine - the elusive epigenetic mark in mammalian DNA. Chem. Soc. Rev. 2012;41:6916–6930. PubMed PMC

Iqbal K, Jin SG, Pfeifer GP, Szabó PE. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA. 2011;108:3642–3647. PubMed PMC

Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. TET proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–1303. PubMed PMC

Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One. 2010;5:e8888. PubMed PMC

Jin SG, Kadam S, Pfeifer GP. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 2010;38:e125. PubMed PMC

Münzel M, Lercher L, Müller M, Carell T. Chemical discrimination between dC and (5Me)dC via their hydroxylamine adducts. Nucleic Acids Res. 2010;38:e192. PubMed PMC

Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science. 2012;336:934–937. PubMed

Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011;473:394–397. PubMed PMC

Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 2011;29:68–72. PubMed PMC

Wanunu M, Cohen-Karni D, Johnson RR, Fields L, Benner J, Peterman N, Zheng Y, Klein ML, Drndic M. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J. Am. Chem. Soc. 2010;133:486–492. PubMed PMC

Frauer C, Hoffmann T, Bultmann S, Casa V, Cardoso MC, Antes I, Leonhardt H. Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS One. 2011;6:e21306. PubMed PMC

Münzel M, Lischke U, Stathis D, Pfaffeneder T, Gnerlich FA, Deiml CA, Koch SC, Karaghiosoff K, Carell T. Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Chem. Eur. J. 2011;17:13782–13788. PubMed

Patel DJ, Kozlowski SA, Marky LA, Broka C, Rice JA, Itakura K, Breslauer KJ. Premelting and melting transitions in the d(CGCGAATTCGCG) self-complementary duplex in solution. Biochemistry. 1982;21:428–436. PubMed

Wing R, Drew H, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE. Crystal-structure analysis of a complete turn of B-DNA. Nature. 1980;287:755–758. PubMed

Drew HR, Wing RM, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE. Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl Acad. Sci. USA. 1981;78:2179–2183. PubMed PMC

Marky LA, Blumenfeld KS, Kozlowski S, Breslauer KJ. Salt-dependent conformational transitions in the self-complementary deoxydodecanucleotide d(CGCAATTCGCG): evidence for hairpin formation. Biopolymers. 1983;22:1247–1257. PubMed

Rodríguez López CM, Lloyd AJ, Leonard K, Wilkinson MJ. Differential effect of three base modifications on DNA thermostability revealed by high resolution melting. Anal. Chem. 2012;84:7336–7342. PubMed

Thalhammer A, Hansen AS, El-Sagheer AH, Brown T, Schofield CJ. Hydroxylation of methylated CpG dinucleotides reverses stabilisation of DNA duplexes by cytosine 5-methylation. Chem. Commun. 2011;47:5325–5327. PubMed

Gray DM, Hung SH, Johnson KH. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 1995;246:19–34. PubMed

Mergny JL, Li J, Lacroix L, Amrane S, Chaires JB. Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res. 2005;33:e138. PubMed PMC

Doudna JA, Grosshans C, Gooding A, Kundrot CE. Crystallization of ribozymes and small RNA motifs by a sparse-matrix approach. Proc. Natl Acad. Sci. USA. 1993;90:7829–7833. PubMed PMC

Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010;66:125–132. PubMed PMC

Heras B, Martin JL. Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr. D Biol. Crystallogr. 2005;61:1173–1180. PubMed

Storoni LC, McCoy AJ, Read RJ. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 2004;60:432–438. PubMed

McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. PubMed PMC

Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67:235–242. PubMed PMC

Egli M, Tereshko V, Teplova M, Minasov G, Joachimiak A, Sanishvili R, Weeks CM, Miller R, Maier MA, An H, et al. X-ray crystallographic analysis of the hydration of A- and B-form DNA at atomic resolution. Biopolymers. 1998;48:234–252. PubMed

Sheldrick GM. A short history of SHELX. Acta Crystallogr. A. 2008;64:112–122. PubMed

Thorn A, Dittrich B, Sheldrick GM. Enhanced rigid-bond restraints. Acta Crystallogr. A. 2012;68:448–451.

Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA - a self-parameterizing force field. Proteins. 2002;47:393–402. PubMed

Lu XJ, Olson WK. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003;31:5108–5121. PubMed PMC

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al. Gaussian 03, Revision D.01. Wallingford, CT: Gaussian Inc.; 2004.

Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 1999;110:6158–6170.

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. PubMed

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple (vol 77, pg 3865, 1996) Phys. Rev. Lett. 1997;78:1396. PubMed

Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular-orbital methods. 9. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971;54:724–728.

Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem. Rev. 2005;105:2999–3093. PubMed

Kypr J, Kejnovska I, Renciuk D, Vorlickova M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009;37:1713–1725. PubMed PMC

Johnson BB, Dahl KS, Tinoco I, Ivanov VI, Zhurkin VB. Correlations between deoxyribonucleic-acid structural parameters and calculated circular-dichroism spectra. Biochemistry. 1981;20:73–78. PubMed

Gray DM, Ratliff RL, Vaughan MR. Circular dichroism spectroscopy of DNA. Methods Enzymol. 1992;211:389–406. PubMed

Johnson WC. New York: VCH Publishers; 1994. CD of nucleic acids.

Shui XQ, McFail-Isom L, Hu GG, Williams LD. The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry. 1998;37:8341–8355. PubMed

Tereshko V, Minasov G, Egli M. The Dickerson–Drew B-DNA dodecamer revisited at atomic resolution. J. Am. Chem. Soc. 1999;121:470–471.

Sines CC, McFail-Isom L, Howerton SB, VanDerveer D, Williams LD. Cations mediate B-DNA conformational heterogeneity. J. Am. Chem. Soc. 2000;122:11048–11056.

Howerton SB, Sines CC, VanDerveer D, Williams LD. Locating monovalent cations in the grooves of B-DNA. Biochemistry. 2001;40:10023–10031. PubMed

Li J, Kumar SVP, Stuart AL, Delbaere LTJ, Gupta SV. Structure and conformation of 5-hydroxymethyl-2′-deoxycitidine, C10H15N3O5. Acta Crystallogr. C. 1994;50:1837–1839.

Zobi F, Blacque O, Schmalle HW, Spingler B, Alberto R. Head-to-head (HH) and head-to-tail (HT) conformers of cis-bis guanine ligands bound to the [Re(CO)3]+ core. Inorg. Chem. 2004;43:2087–2096. PubMed

Fernández-Recio J. Prediction of protein binding sites and hot spots. WIRES Comput. Mol. Sci. 2011;1:680–698.

Nayal M, Di Cera E. Valence screening of water in protein crystals reveals potential Na+ binding sites. J. Mol. Biol. 1996;256:228–234. PubMed

Brown ID, Wu KK. Empirical parameters for calculating cation-oxygen bond valences. Acta Crystallogr. B. 1976;32:1957–1959.

Shui XQ, Sines CC, McFail-Isom L, VanDerveer D, Williams LD. Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations. Biochemistry. 1998;37:16877–16887. PubMed

Juan ECM, Kondo J, Kurihara T, Ito T, Ueno Y, Matsuda A, Takénaka A. Crystal structures of DNA:DNA and DNA:RNA duplexes containing 5-(N-aminohexyl)carbamoyl-modified uracils reveal the basis for properties as antigene and antisense molecules. Nucleic Acids Res. 2007;35:1969–1977. PubMed PMC

Tsunoda M, Karino N, Ueno Y, Matsuda A, Takenaka A. Crystallization and preliminary X-ray analysis of a DNA dodecamer containing 2′-deoxy-5-formyluridine; what is the role of magnesium cation in crystallization of Dickerson-type DNA dodecamers? Acta Crystallogr. D Biol. Crystallogr. 2001;57:345–348. PubMed

Chua EYD, Vasudevan D, Davey GE, Wu B, Davey CA. The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res. 2012;40:6338–6352. PubMed PMC

Luscombe NM, Laskowski RA, Thornton JM. NUCPLOT: a program to generate schematic diagrams of protein–nucleic acid interactions. Nucleic Acids Res. 1997;25:4940–4945. PubMed PMC

Mergny JL, Lacroix L. Analysis of thermal melting curves. Oligonucleotides. 2003;13:515–537. PubMed

McNicholas S, Potterton E, Wilson KS, Noble MEM. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. 2011;D67:386–394. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...