Quantum dots and prion proteins: is this a new challenge for neurodegenerative diseases imaging?
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
24055838
PubMed Central
PMC4134339
DOI
10.4161/pri.26524
PII: 26524
Knihovny.cz E-resources
- Keywords
- imaging, label, neurodegenerative disease, prion protein, quantum dots,
- MeSH
- Fluorescent Dyes * MeSH
- Quantum Dots * MeSH
- Humans MeSH
- Models, Molecular MeSH
- Brain pathology MeSH
- Neurodegenerative Diseases diagnosis pathology MeSH
- Prion Diseases diagnosis pathology MeSH
- Prions analysis MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Fluorescent Dyes * MeSH
- Prions MeSH
A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrP(Sc)), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrP(Sc) detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels.
See more in PubMed
Prusiner SB. Prions. Proc Natl Acad Sci U S A. 1998;95:13363–83. doi: 10.1073/pnas.95.23.13363. PubMed DOI PMC
Hegde RS, Tremblay P, Groth D, DeArmond SJ, Prusiner SB, Lingappa VR. Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature. 1999;402:822–6. doi: 10.1038/45574. PubMed DOI
Prusiner SB. Prion diseases and the BSE crisis. Science. 1997;278:245–51. doi: 10.1126/science.278.5336.245. PubMed DOI
Inge-Vechtomov SG, Zhouravleva GA, Chernoff YO. Biological roles of prion domains. Prion. 2007;1:228–35. doi: 10.4161/pri.1.4.5059. PubMed DOI PMC
Sobrova P, Ryvolova M, Hynek D, Adam V, Hubalek J, Kizek R. Electrochemical Behaviour of Native and Denatured beta-Sheet Breaker Prion Protein. Int J Electrochem Sci. 2012;7:928–42.
Kozlowski H, Luczkowski M, Remelli M, Valensin D. Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases) Coord Chem Rev. 2012;256:2129–41. doi: 10.1016/j.ccr.2012.03.013. DOI
Viles JH. Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases. Coord Chem Rev. 2012;256:2271–84. doi: 10.1016/j.ccr.2012.05.003. DOI
Kessels HW, Nguyen LN, Nabavi S, Malinow R. The prion protein as a receptor for amyloid-beta. Nature. 2010;466:E3–4, discussion E4-5. doi: 10.1038/nature09217. PubMed DOI PMC
Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 2009;457:1128–32. doi: 10.1038/nature07761. PubMed DOI PMC
Fowler DM, Kelly JW. Functional amyloidogenesis and cytotoxicity-insights into biology and pathology. PLoS Biol. 2012;10:e1001459. doi: 10.1371/journal.pbio.1001459. PubMed DOI PMC
Hainfellner JA, Wanschitz J, Jellinger K, Liberski PP, Gullotta F, Budka H. Coexistence of Alzheimer-type neuropathology in Creutzfeldt-Jakob disease. Acta Neuropathol. 1998;96:116–22. doi: 10.1007/s004010050870. PubMed DOI
Peden AH, Ironside JW. Molecular pathology in neurodegenerative diseases. Curr Drug Targets. 2012;13:1548–59. doi: 10.2174/138945012803530134. PubMed DOI
van Harten AC, Kester MI, Visser PJ, Blankenstein MA, Pijnenburg YAL, van der Flier WM, Scheltens P. Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin Chem Lab Med. 2011;49:353–66. doi: 10.1515/CCLM.2011.086. PubMed DOI
Jellinger KA. Interaction between pathogenic proteins in neurodegenerative disorders. J Cell Mol Med. 2012;16:1166–83. doi: 10.1111/j.1582-4934.2011.01507.x. PubMed DOI PMC
Revesz T, Ghiso J, Lashley T, Plant G, Rostagno A, Frangione B, Holton JL. Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J Neuropathol Exp Neurol. 2003;62:885–98. PubMed
Kellett KAB, Hooper NM. Prion protein and Alzheimer disease. Prion. 2009;3:190–4. doi: 10.4161/pri.3.4.9980. PubMed DOI PMC
Parchi P, Strammiello R, Giese A, Kretzschmar H. Phenotypic variability of sporadic human prion disease and its molecular basis: past, present, and future. Acta Neuropathol. 2011;121:91–112. doi: 10.1007/s00401-010-0779-6. PubMed DOI
Soto C. Diagnosing prion diseases: needs, challenges and hopes. Nat Rev Microbiol. 2004;2:809–19. doi: 10.1038/nrmicro1003. PubMed DOI
Huzarewich RL, Siemens CG, Booth SA. Application of “omics” to prion biomarker discovery. J Biomed Biotechnol. 2010;2010:613504. doi: 10.1155/2010/613504. PubMed DOI PMC
Goldfarb LG, Cervenakova L, Gajdusek DC. Genetic studies in relation to kuru: an overview. Curr Mol Med. 2004;4:375–84. doi: 10.2174/1566524043360627. PubMed DOI
Liberski PP. Kuru and D. Carleton Gajdusek: a close encounter. Folia Neuropathol. 2009;47:114–37. PubMed
Brown DR, Wong BS, Hafiz F, Clive C, Haswell SJ, Jones IM. Normal prion protein has an activity like that of superoxide dismutase. Biochem J. 1999;344:1–5. doi: 10.1042/0264-6021:3440001. PubMed DOI PMC
Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB. Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med. 1998;4:1157–65. doi: 10.1038/2654. PubMed DOI
Wadsworth JDF, Joiner S, Hill AF, Campbell TA, Desbruslais M, Luthert PJ, Collinge J. Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. Lancet. 2001;358:171–80. doi: 10.1016/S0140-6736(01)05403-4. PubMed DOI
Peralta OA, Eyestone WH. Quantitative and qualitative analysis of cellular prion protein (PrP(C)) expression in bovine somatic tissues. Prion. 2009;3:161–70. doi: 10.4161/pri.3.3.9772. PubMed DOI PMC
Nunnally BK. It's a mad, mad, mad, mad cow: a review of analytical methodology for detecting BSE/TSE. Trac-Trends Anal Chem. 2002;21:82–9. doi: 10.1016/S0165-9936(01)00134-0. DOI
Aguzzi A, Heikenwalder M, Miele G. Progress and problems in the biology, diagnostics, and therapeutics of prion diseases. J Clin Invest. 2004;114:153–60. PubMed PMC
Grassi J, Maillet S, Simon S, Morel N. Progress and limits of TSE diagnostic tools. Vet Res. 2008;39:33. doi: 10.1051/vetres:2008009. PubMed DOI
Miller JM, Jenny AL, Taylor WD, Marsh RF, Rubenstein R, Race RE. Immunohistochemical detection of prion protein in sheep with scrapie. J Vet Diagn Invest. 1993;5:309–16. doi: 10.1177/104063879300500301. PubMed DOI
Zsolnai A, Anton I, Kühn C, Fésüs L. Detection of single-nucleotide polymorphisms coding for three ovine prion protein variants by primer extension assay and capillary electrophoresis. Electrophoresis. 2003;24:634–8. doi: 10.1002/elps.200390074. PubMed DOI
Groschup MH, Weiland F, Straub OC. Diagnosis of bovine spongiform encephalopathy and scrapie - Possibilities and limitations of the diagnosis. Tierarztl Umsch. 1994;49:137–42.
Lacroux C, Bougard D, Litaise C, Simmons H, Corbiere F, Dernis D, Tardivel R, Morel N, Simon S, Lugan S, et al. Impact of leucocyte depletion and prion reduction filters on TSE blood borne transmission. PLoS One. 2012;7:e42019. doi: 10.1371/journal.pone.0042019. PubMed DOI PMC
Zhuang HL, Zhen SJ, Wang J, Huang CZ. Sensitive detection of prion protein through long range resonance energy transfer between graphene oxide and molecular aptamer beacon. Anal Methods. 2013;5:208–12. doi: 10.1039/c2ay26156a. DOI
Atarashi R, Sano K, Satoh K, Nishida N. Real-time quaking-induced conversion: a highly sensitive assay for prion detection. Prion. 2011;5:150–3. doi: 10.4161/pri.5.3.16893. PubMed DOI PMC
Azam G, Shibata T, Kabashima T, Kai M. Sensitive chemiluminescence detection of prion protein on a membrane by using a peroxidase-labeled dextran probe. Anal Sci. 2011;27:715–20. doi: 10.2116/analsci.27.715. PubMed DOI
Silva CJ, Onisko BC, Dynin I, Erickson ML, Requena JR, Carter JM. Utility of mass spectrometry in the diagnosis of prion diseases. Anal Chem. 2011;83:1609–15. doi: 10.1021/ac102527w. PubMed DOI
Onisko B, Dynin I, Requena JR, Silva CJ, Erickson M, Carter JM. Mass spectrometric detection of attomole amounts of the prion protein by nanoLC/MS/MS. J Am Soc Mass Spectrom. 2007;18:1070–9. doi: 10.1016/j.jasms.2007.03.009. PubMed DOI
Yang WC, Schmerr MJ, Jackman R, Bodemer W, Yeung ES. Capillary electrophoresis-based noncompetitive immunoassay for the prion protein using fluorescein-labeled protein A as a fluorescent probe. Anal Chem. 2005;77:4489–94. doi: 10.1021/ac050231u. PubMed DOI
Yang WC, Yeung ES, Schmerr MJ. Detection of prion protein using a capillary electrophoresis-based competitive immunoassay with laser-induced fluorescence detection and cyclodextrin-aided separation. Electrophoresis. 2005;26:1751–9. doi: 10.1002/elps.200410202. PubMed DOI
Chang BG, Gray P, Piltch M, Bulgin MS, Sorensen-Melson S, Miller MW, Davies P, Brown DR, Coughlin DR, Rubenstein R. Surround optical fiber immunoassay (SOFIA): an ultra-sensitive assay for prion protein detection. J Virol Methods. 2009;159:15–22. doi: 10.1016/j.jviromet.2009.02.019. PubMed DOI
Reuter T, Gilroyed BH, Alexander TW, Mitchell G, Balachandran A, Czub S, McAllister TA. Prion protein detection via direct immuno-quantitative real-time PCR. J Microbiol Methods. 2009;78:307–11. doi: 10.1016/j.mimet.2009.07.001. PubMed DOI
Dabaghian RH, Barnard G, McConnell I, Clewley JP. An immunoassay for the pathological form of the prion protein based on denaturation and time resolved fluorometry. J Virol Methods. 2006;132:85–91. doi: 10.1016/j.jviromet.2005.09.002. PubMed DOI
Brooks B, Brooks A, Wulff SS, Lewis RV. Identification of problems developing an ultrasensitive immunoassay for the ante mortem detection of the infectious isoform of the CWD-associated prion protein. J Immunoassay Immunochem. 2009;30:135–49. doi: 10.1080/15321810902782848. PubMed DOI
Colby DW, Zhang Q, Wang S, Groth D, Legname G, Riesner D, Prusiner SB. Prion detection by an amyloid seeding assay. Proc Natl Acad Sci U S A. 2007;104:20914–9. doi: 10.1073/pnas.0710152105. PubMed DOI PMC
Chang BG, Cheng X, Yin SM, Pan T, Zhang HT, Wong PK, Kang SC, Xiao F, Yan HM, Li CY, et al. Test for detection of disease-associated prion aggregate in the blood of infected but asymptomatic animals. Clin Vaccine Immunol. 2007;14:36–43. doi: 10.1128/CVI.00341-06. PubMed DOI PMC
Trieschmann L, Navarrete Santos A, Kaschig K, Torkler S, Maas E, Schätzl H, Böhm G. Ultra-sensitive detection of prion protein fibrils by flow cytometry in blood from cattle affected with bovine spongiform encephalopathy. BMC Biotechnol. 2005;5:26. doi: 10.1186/1472-6750-5-26. PubMed DOI PMC
Xiao SJ, Hu PP, Li YF, Huang CZ, Huang T, Xiao GF. Aptamer-mediated turn-on fluorescence assay for prion protein based on guanine quenched fluophor. Talanta. 2009;79:1283–6. doi: 10.1016/j.talanta.2009.05.040. PubMed DOI
Henry J, Anand A, Chowdhury M, Coté G, Moreira R, Good T. Development of a nanoparticle-based surface-modified fluorescence assay for the detection of prion proteins. Anal Biochem. 2004;334:1–8. doi: 10.1016/j.ab.2004.07.008. PubMed DOI
Huang XX, Long YJ, Zhang HJ, Wang QL, Zhu R, Zheng HZ. Gold nanoparticles as a probe for prion determination via resonance light scattering method. Anal Sci. 2012;28:475–9. doi: 10.2116/analsci.28.475. PubMed DOI
Ugnon-Café S, Dorey A, Bilheude JM, Streichenberger N, Viennet G, Meyronet D, Maues de Paula A, Perret-Liaudet A, Quadrio I. Rapid screening and confirmatory methods for biochemical diagnosis of human prion disease. J Virol Methods. 2011;175:216–23. doi: 10.1016/j.jviromet.2011.05.016. PubMed DOI
Warwick RM, Armitage WJ, Chandrasekar A, Mallinson G, Poniatowski S, Clarkson A. A pilot to examine the logistical and feasibility issues in testing deceased tissue donors for vCJD using tonsil as the analyte. Cell Tissue Bank. 2012;13:53–61. doi: 10.1007/s10561-010-9228-y. PubMed DOI
Dong CF, Huang YX, An R, Chen JM, Wang XF, Shan B, Lei YJ, Han L, Zhang BY, Han J, et al. Sensitive detection of PrPSc by Western blot assay based on streptomycin sulphate precipitation. Zoonoses Public Health. 2007;54:328–36. doi: 10.1111/j.1863-2378.2007.01062.x. PubMed DOI
Edgeworth JA, Farmer M, Sicilia A, Tavares P, Beck J, Campbell T, Lowe J, Mead S, Rudge P, Collinge J, et al. Detection of prion infection in variant Creutzfeldt-Jakob disease: a blood-based assay. Lancet. 2011;377:487–93. doi: 10.1016/S0140-6736(10)62308-2. PubMed DOI
Rubenstein R, Gray PC, Wehlburg CM, Wagner JS, Tisone GC. Detection and discrimination of PrPSc by multi-spectral ultraviolet fluorescence. Biochem Biophys Res Commun. 1998;246:100–6. doi: 10.1006/bbrc.1998.8542. PubMed DOI
Birkmann E, Schäfer O, Weinmann N, Dumpitak C, Beekes M, Jackman R, Thorne L, Riesner D. Detection of prion particles in samples of BSE and scrapie by fluorescence correlation spectroscopy without proteinase K digestion. Biol Chem. 2006;387:95–102. doi: 10.1515/BC.2006.013. PubMed DOI
Fujii F, Horiuchi M, Ueno M, Sakata H, Nagao I, Tamura M, Kinjo M. Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Anal Biochem. 2007;370:131–41. doi: 10.1016/j.ab.2007.07.018. PubMed DOI
Lodi R, Parchi P, Tonon C, Manners D, Capellari S, Strammiello R, Rinaldi R, Testa C, Malucelli E, Mostacci B, et al. Magnetic resonance diagnostic markers in clinically sporadic prion disease: a combined brain magnetic resonance imaging and spectroscopy study. Brain. 2009;132:2669–79. doi: 10.1093/brain/awp210. PubMed DOI PMC
Galanaud D, Haik S, Linguraru MG, Ranjeva JP, Faucheux B, Kaphan E, Ayache N, Chiras J, Cozzone P, Dormont D, et al. Combined diffusion imaging and MR spectroscopy in the diagnosis of human prion diseases. AJNR Am J Neuroradiol. 2010;31:1311–8. doi: 10.3174/ajnr.A2069. PubMed DOI PMC
Murray KL, Knight RSG, Summers D, Collie DAC, Will RG. The role of MRI brain scan in the diagnosis of human prion disease. J Neurol Neurosurg Psychiatry. 2005;76:608.
Lasch P, Schmitt J, Beekes M, Udelhoven T, Eiden M, Fabian H, Petrich W, Naumann D. Antemortem identification of bovine spongiform encephalopathy from serum using infrared spectroscopy. Anal Chem. 2003;75:6673–8. doi: 10.1021/ac030259a. PubMed DOI
Beekes M, Lasch P, Naumann D. Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research. Vet Microbiol. 2007;123:305–19. doi: 10.1016/j.vetmic.2007.04.010. PubMed DOI
Alvarez-Puebla RA, Agarwal A, Manna P, Khanal BP, Aldeanueva-Potel P, Carbó-Argibay E, Pazos-Pérez N, Vigderman L, Zubarev ER, Kotov NA, et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc Natl Acad Sci U S A. 2011;108:8157–61. doi: 10.1073/pnas.1016530108. PubMed DOI PMC
Castilla J, Saa P, Morales R, Abid K, Maundrell K, Soto C. Protein misfolding cyclic amplification for diagnosis and prion propagation studies. In: Kheterpal I, Wetzel R, eds. Amyloid, Prions, and Other Protein Aggregates, Pt B. San Diego: Elsevier Academic Press Inc, 2006:3-21. PubMed
Saá P, Castilla J, Soto C. Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J Biol Chem. 2006;281:35245–52. doi: 10.1074/jbc.M603964200. PubMed DOI
Saborio GP, Permanne B, Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 2001;411:810–3. doi: 10.1038/35081095. PubMed DOI
Soto C, Anderes L, Suardi S, Cardone F, Castilla J, Frossard MJ, Peano S, Saa P, Limido L, Carbonatto M, et al. Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett. 2005;579:638–42. doi: 10.1016/j.febslet.2004.12.035. PubMed DOI
Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, Cole GM, Small GW, Huang SC, Barrio JR. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J Neurosci. 2001;21:RC189. PubMed PMC
Cai LS, Chin FT, Pike VW, Toyama H, Liow JS, Zoghbi SS, Modell K, Briard E, Shetty HU, Sinclair K, et al. Synthesis and evaluation of two 18F-labeled 6-iodo-2-(4′-N,N-dimethylamino)phenylimidazo[1,2-a]pyridine derivatives as prospective radioligands for beta-amyloid in Alzheimer’s disease. J Med Chem. 2004;47:2208–18. doi: 10.1021/jm030477w. PubMed DOI PMC
Klunk WE, Wang YM, Huang GF, Debnath ML, Holt DP, Shao L, Hamilton RL, Ikonomovic MD, DeKosky ST, Mathis CA. The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci. 2003;23:2086–92. PubMed PMC
Mastrianni JA. Prion diseases. Clin Neurosci Res. 2004;3:469–80. doi: 10.1016/j.cnr.2004.04.012. DOI
Ono M, Saji H. Molecular approaches to the treatment, prophylaxis, and diagnosis of Alzheimer’s disease: novel PET/SPECT imaging probes for diagnosis of Alzheimer’s disease. J Pharmacol Sci. 2012;118:338–44. doi: 10.1254/jphs.11R08FM. PubMed DOI
Verhoeff NP, Wilson AA, Takeshita S, Trop L, Hussey D, Singh K, Kung HF, Kung MP, Houle S. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry. 2004;12:584–95. PubMed
Kudo Y, Okamura N, Furumoto S, Tashiro M, Furukawa K, Maruyama M, Itoh M, Iwata R, Yanai K, Arai H. 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6- (2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients. J Nucl Med. 2007;48:553–61. doi: 10.2967/jnumed.106.037556. PubMed DOI
Johnson AE, Jeppsson F, Sandell J, Wensbo D, Neelissen JAM, Juréus A, Ström P, Norman H, Farde L, Svensson SPS. AZD2184: a radioligand for sensitive detection of beta-amyloid deposits. J Neurochem. 2009;108:1177–86. doi: 10.1111/j.1471-4159.2008.05861.x. PubMed DOI
Zhang LJ, Xu CL, Li BX. Simple and sensitive detection method for chromium(VI) in water using glutathione-capped CdTe quantum dots as fluorescent probes. Mikrochim Acta. 2009;166:61–8. doi: 10.1007/s00604-009-0164-0. DOI
Li T, Zhou YY, Sun JY, Tang DB, Guo SX, Ding XP. Ultrasensitive detection of mercury(II) ion using CdTe quantum dots in sol-gel-derived silica spheres coated with calix 6 arene as fluorescent probes. Mikrochim Acta. 2011;175:113–9. doi: 10.1007/s00604-011-0655-7. DOI
Li YL, Zhou J, Liu CL, Li HB. Composite quantum dots detect Cd(II) in living cells in a fluorescence “turning on” mode. J Mater Chem. 2012;22:2507–11. doi: 10.1039/c1jm14317d. DOI
Algar WR, Tavares AJ, Krull UJ. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta. 2010;673:1–25. doi: 10.1016/j.aca.2010.05.026. PubMed DOI
Chen JA, Pei Y, Chen ZW, Cai JY. Quantum dot labeling based on near-field optical imaging of CD44 molecules. Micron. 2010;41:198–202. doi: 10.1016/j.micron.2009.11.002. PubMed DOI
Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5:763–75. doi: 10.1038/nmeth.1248. PubMed DOI
Das P, Zhong WH, Claverie JP. Copolymer nanosphere encapsulated CdS quantum dots prepared by RAFT copolymerization: synthesis, characterization and mechanism of formation. Colloid Polym Sci. 2011;289:1519–33. doi: 10.1007/s00396-011-2466-0. DOI
Kumar KS, Divya A, Reddy PS. Synthesis and characterization of Cr doped CdS nanoparticles stabilized with polyvinylpyrrolidone. Appl Surf Sci. 2011;257:9515–8. doi: 10.1016/j.apsusc.2011.06.048. DOI
Gondal MA, Bagabas AA, Dastageer MA. Synthesis of w-CdS quantum dots and discovery of intense sub band emission owing to longitudinal optical phonons. J Nanopart Res. 2011;13:3835–42. doi: 10.1007/s11051-011-0318-y. DOI
Gu Y, Kuskovsky IL, Fung J, Robinson R, Herman IP, Neumark GF, Zhou X, Guo SP, Tamargo MC. Determination of size and composition of optically active CdZnSe/ZnBeSe quantum dots. Appl Phys Lett. 2003;83:3779–81. doi: 10.1063/1.1623941. DOI
Rameshwar T, Samal S, Lee S, Kim S, Cho J, Kim IS. Determination of the size of water-soluble nanoparticles and quantum dots by field-flow fractionation. J Nanosci Nanotechnol. 2006;6:2461–7. doi: 10.1166/jnn.2006.544. PubMed DOI
Lin ZH, Wang MQ, Wei LZ, Song XH, Xue YH, Yao X. Synthesis and characterization of ZnSe/ZnS core/shell nanocrystals by aqueous reflux route. J Alloy Comp. 2011;509:8356–9. doi: 10.1016/j.jallcom.2011.03.070. DOI
Huang FH, Lan YL, Chen PF. Synthesis and characterization of water-soluble l-cysteine-modified ZnS nanocrystals doped with silver. J Mater Sci. 2011;46:5732–6. doi: 10.1007/s10853-011-5527-3. DOI
Khene S, Moeno S, Nyokong T. Voltammetry and electrochemical impedance spectroscopy of gold electrodes modified with CdTe quantum dots and their conjugates with nickel tetraamino phthalocyanine. Polyhedron. 2011;30:2162–70. doi: 10.1016/j.poly.2011.06.002. DOI
Li YF, Han M, Bai HY, Wu Y, Dai ZH, Bao JC. A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination. Electrochim Acta. 2011;56:7058–63. doi: 10.1016/j.electacta.2011.05.119. DOI
Wang QS, Yang L, Fang TT, Wu S, Liu P, Min XM, Li X. Interactions between CdSe/CdS quantum dots and DNA through spectroscopic and electrochemical methods. Appl Surf Sci. 2011;257:9747–51. doi: 10.1016/j.apsusc.2011.05.123. DOI
Ghaderi S, Ramesh B, Seifalian AM. Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review. J Drug Target. 2011;19:475–86. doi: 10.3109/1061186X.2010.526227. PubMed DOI
Hoshino A, Hanada S, Yamamoto K. Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol. 2011;85:707–20. doi: 10.1007/s00204-011-0695-0. PubMed DOI
Pelley JL, Daar AS, Saner MA. State of academic knowledge on toxicity and biological fate of quantum dots. Toxicol Sci. 2009;112:276–96. doi: 10.1093/toxsci/kfp188. PubMed DOI PMC
Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114:165–72. doi: 10.1289/ehp.8284. PubMed DOI PMC
Ryvolova M, Chomoucka J, Janu L, Drbohlavova J, Adam V, Hubalek J, Kizek R. Biotin-modified glutathione as a functionalized coating for bioconjugation of CdTe-based quantum dots. Electrophoresis. 2011;32:1619–22. PubMed
Bottini M, Cerignoli F, Dawson MI, Magrini A, Rosato N, Mustelin T. Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes. Biomacromolecules. 2006;7:2259–63. doi: 10.1021/bm0602031. PubMed DOI
Shao J, You XG, Gao F, He R, Cui DX. Labeling of quantum dots with streptavidin and its bioactivity measurement. Chin J Anal Chem. 2006;34:1625–8.
Wu Y, Lopez GP, Sklar LA, Buranda T. Spectroscopic characterization of streptavidin functionalized quantum dots. Anal Biochem. 2007;364:193–203. doi: 10.1016/j.ab.2007.02.007. PubMed DOI PMC
Bruchez M, Jr., Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281:2013–6. doi: 10.1126/science.281.5385.2013. PubMed DOI
Chan WCW, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281:2016–8. doi: 10.1126/science.281.5385.2016. PubMed DOI
Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Radler J, Natile G, Parak WJ. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 2004;4:703–7. doi: 10.1021/nl035172j. DOI
Fernandez-Argüelles MT, Yakovlev A, Sperling RA, Luccardini C, Gaillard S, Medel AS, Mallet JM, Brochon JC, Feltz A, Oheim M, et al. Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes. Nano Lett. 2007;7:2613–7. doi: 10.1021/nl070971d. PubMed DOI
Lin CAJ, Sperling RA, Li JK, Yang TY, Li PY, Zanella M, Chang WH, Parak WJ. Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small. 2008;4:334–41. doi: 10.1002/smll.200700654. PubMed DOI
Alivisatos AP. Birth of a nanoscience building block. ACS Nano. 2008;2:1514–6. doi: 10.1021/nn800485f. PubMed DOI
Sobrova P, Ryvolova M. J. H, Adam V, Kizek R. Femtogram Electrochemical Sensing of Prion Proteins Using Quantum Dots. Anal Chim Acta. 2013 Submitted.
Duan JL, Song LX, Zhan JH. One-Pot Synthesis of Highly Luminescent CdTe Quantum Dots by Microwave Irradiation Reduction and Their Hg(2+)-Sensitive Properties. Nano Res. 2009;2:61–8. doi: 10.1007/s12274-009-9004-0. DOI
Dalal V, Bhattacharya M, Narang D, Sharma PK, Mukhopadhyay S. Nanoscale Fluorescence Imaging of Single Amyloid Fibrils. J Phys Chem Lett. 2012;3:1783–7. doi: 10.1021/jz300687f. PubMed DOI
Zhou YW, Li CM, Liu Y, Huang CZ. Effective detection and cell imaging of prion protein with new prepared targetable yellow-emission silver nanoclusters. Analyst. 2013;138:873–8. doi: 10.1039/c2an36456e. PubMed DOI
Gao XH, Yang LL, Petros JA, Marshall FF, Simons JW, Nie SM. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005;16:63–72. doi: 10.1016/j.copbio.2004.11.003. PubMed DOI
Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–44. doi: 10.1126/science.1104274. PubMed DOI PMC
Smith AM, Duan HW, Mohs AM, Nie SM. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev. 2008;60:1226–40. doi: 10.1016/j.addr.2008.03.015. PubMed DOI PMC
Hu R, Zhang XB, Kong RM, Zhao XH, Jiang JH, Tan WH. Nucleic acid-functionalized nanomaterials for bioimaging applications. J Mater Chem. 2011;21:16323–34. doi: 10.1039/c1jm12588e. DOI
Taniguchi S, Green M, Rizvi SB, Seifalian A. The one-pot synthesis of core/shell/shell CdTe/CdSe/ZnSe quantum dots in aqueous media for in vivo deep tissue imaging. J Mater Chem. 2011;21:2877–82. doi: 10.1039/c0jm03527k. DOI
Ciarlo M, Russo P, Cesario A, Ramella S, Baio G, Neumaier CE, Paleari L. Use of the semiconductor nanotechnologies “quantum dots” for in vivo cancer imaging. Recent Pat Anticancer Drug Discov. 2009;4:207–15. doi: 10.2174/157489209789206841. PubMed DOI
Tavares AJ, Chong LR, Petryayeva E, Algar WR, Krull UJ. Quantum dots as contrast agents for in vivo tumor imaging: progress and issues. Anal Bioanal Chem. 2011;399:2331–42. doi: 10.1007/s00216-010-4010-3. PubMed DOI
Jetha NN, Semenchenko V, Wishart DS, Cashman NR, Marziali A. Nanopore Analysis of Wild-Type and Mutant Prion Protein (PrPC): Single Molecule Discrimination and PrPC Kinetics. PLoS ONE. 2013;8:1–10. doi: 10.1371/journal.pone.0054982. PubMed DOI PMC