The signal sequence influences post-translational ER translocation at distinct stages
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
24130708
PubMed Central
PMC3793985
DOI
10.1371/journal.pone.0075394
PII: PONE-D-13-24085
Knihovny.cz E-zdroje
- MeSH
- endoplazmatické retikulum metabolismus MeSH
- intracelulární membrány metabolismus MeSH
- malá interferující RNA MeSH
- posttranslační úpravy proteinů genetika fyziologie MeSH
- transport proteinů fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malá interferující RNA MeSH
The metazoan Sec61 translocon transports polypeptides into and across the membrane of the endoplasmic reticulum via two major routes, a well-established co-translational pathway and a post-translational alternative. We have used two model substrates to explore the elements of a secretory protein precursor that preferentially direct it towards a co- or post-translational pathway for ER translocation. Having first determined the capacity of precursors to enter ER derived microsomes post-translationally, we then exploited semi-permeabilized mammalian cells specifically depleted of key membrane components using siRNA to address their contribution to the membrane translocation process. These studies suggest precursor chain length is a key factor in the post-translational translocation at the mammalian ER, and identify Sec62 and Sec63 as important components acting on this route. This role for Sec62 and Sec63 is independent of the signal sequence that delivers the precursor to the ER. However, the signal sequence can influence the subsequent membrane translocation process, conferring sensitivity to a small molecule inhibitor and dictating reliance on the molecular chaperone BiP. Our data support a model where secretory protein precursors that fail to engage the signal recognition particle, for example because they are short, are delivered to the ER membrane via a distinct route that is dependent upon both Sec62 and Sec63. Although this requirement for Sec62 and Sec63 is unaffected by the specific signal sequence that delivers a precursor to the ER, this region can influence subsequent events, including both Sec61 mediated transport and the importance of BiP for membrane translocation. Taken together, our data suggest that an ER signal sequence can regulate specific aspects of Sec61 mediated membrane translocation at a stage following Sec62/Sec63 dependent ER delivery.
Zobrazit více v PubMed
Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271: 1519–1526. PubMed
Cross BC, Sinning I, Luirink J, High S (2009) Delivering proteins for export from the cytosol. Nat Rev Mol Cell Biol 10: 255–264. PubMed
High S, Laird V (1997) Membrane protein biosynthesis - all sewn up? Trends Cell Biol 7: 206–210. PubMed
Zimmermann R, Eyrisch S, Ahmad M, Helms V (2011) Protein translocation across the ER membrane. BBA 1808: 912–924. PubMed
Johnson N, Powis K, High S (2013) Post-translational translocation into the endoplasmic reticulum. BBA 1833: 2403–2409. PubMed
Rapoport TA, Matlack KES, Plath K, Misselwitz B, Staeck O (1999) Posttranslational Protein Translocation Across the Membrane of the Endoplasmic Reticulum. Biol Chem 380: 1143. PubMed
Ng D, Brown J, Walter P (1996) Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134: 269–278. PubMed PMC
Ast T, Cohen G, Schuldiner M (2013) A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152: 1134–1145. PubMed
Ngosuwan J, Wang NM, Fung KL, Chirico WJ (2003) Roles of cytosolic Hsp70 and Hsp40 molecular chaperones in post-translational translocation of presecretory proteins into the endoplasmic reticulum. J Biol Chem 278: 7034–7042. PubMed
Deshaies RJ, Sanders SL, Feldheim DA, Schekman R (1991) Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349: 806–808. PubMed
Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA (1998) Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94: 795–807. PubMed
Matlack KES, Misselwitz B, Plath K, Rapoport TA (1999) BiP Acts as a molecular ratchet during posttranslational transport of prepro-alpha-factor across the ER membrane. Cell 97: 553–564. PubMed
Zimmermann R, Zimmermann M, Wiech H, Schlenstedt G, Muller G, et al. (1990) Ribonucleoparticle-independent transport of proteins into mammalian microsomes. J Bioenerg Biomembr 22: 711–723. PubMed
Muller G, Zimmermann R (1987) Import of honeybee prepromelittin into the endoplasmic reticulum: structural basis for independence of SRP and docking protein. EMBO J 6: 2099–2107. PubMed PMC
Shao S, Hegde RS (2011) A Calmodulin-Dependent Translocation Pathway for Small Secretory Proteins. Cell 147: 1576–1588. PubMed PMC
Johnson N, Vilardi F, Lang S, Leznicki P, Zimmermann R, et al. (2012) TRC40 can deliver short secretory proteins to the Sec61 translocon. J Cell Sci 125: 3612–3620. PubMed PMC
Rabu C, Schmid V, Schwappach B, High S (2009) Biogenesis of tail-anchored proteins: the beginning for the end? J Cell Sci 122: 3605–3612. PubMed PMC
Lang S, Benedix J, Fedeles SV, Schorr S, Schirra C, et al. (2012) Different effects of Sec61α, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J Cell Sci 125: 1958–1969. PubMed PMC
Lakkaraju AKK, Thankappan R, Mary C, Garrison JL, Taunton J, et al. (2012) Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Mol Biol Cell 23: 2712–2722. PubMed PMC
Walter P, Blobel G (1983) Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol 96: 84–93. PubMed
Paton AW, Srimanote P, Talbot UM, Wang H, Paton JC (2004) A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J Exp Med 200: 35–46. PubMed PMC
Paton AW, Beddoe T, Thorpe CM, Whisstock JC, Wilce MCJ, et al. (2006) AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature 443: 548–552. PubMed
Garcia PD, Walter P (1988) Full-length prepro-alpha-factor can be translocated across the mammalian microsomal membrane only if translation has not terminated. J Cell Biol 106: 1043–1048. PubMed PMC
Kurjan J, Herskowitz I (1982) Structure of a yeast pheromone gene (MFα): A putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30: 933–943. PubMed
Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8: 785–786. PubMed
Chen X, VanValkenburgh C, Liang H, Fang H, Green N (2001) Signal Peptidase and Oligosaccharyltransferase Interact in a Sequential and Dependent Manner within the Endoplasmic Reticulum. J Biol Chem 276: 2411–2416. PubMed
Wilson R, Allen AJ, Oliver J, Brookman JL, High S, et al. (1995) The translocation, folding, assembly and redox-dependent degradation of secretory and membrane proteins in semi-permeabilized mammalian cells. Biocem J 307: 679–687. PubMed PMC
Wilson CM, High S (2007) Ribophorin I acts as a substrate-specific facilitator of N-glycosylation. J Cell Sci 120: 648–657. PubMed
Abell BM, Pool MR, Schlenker O, Sinning I, High S (2004) Signal recognition particle mediates post-translational targeting in eukaryotes. EMBO J 23: 2755–2764. PubMed PMC
Besemer J, Harant H, Wang S, Oberhauser B, Marquardt K, et al. (2005) Selective inhibition of cotranslational translocation of vascular cell adhesion molecule 1. Nature 436: 290–293. PubMed
Harant H, Lettner N, Hofer L, Oberhauser B, de Vries JE, et al. (2006) The Translocation Inhibitor CAM741 Interferes with Vascular Cell Adhesion Molecule 1 Signal Peptide Insertion at the Translocon. J Biol Chem 281: 30492–30502. PubMed
Harant H, Wolff B, Schreiner EP, Oberhauser B, Hofer L, et al. (2007) Inhibition of Vascular Endothelial Growth Factor Cotranslational Translocation by the Cyclopeptolide CAM741. Mol Pharm 71: 1657–1665. PubMed
Klappa P, Mayinger P, Pipkorn R, Zimmermann M, Zimmermann R (1991) A microsomal protein is involved in ATP-dependent transport of presecretory proteins into mammalian microsomes. EMBO J 10: 2795–2803. PubMed PMC
Schauble N, Lang S, Jung M, Cappel S, Schorr S, et al. (2012) BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. EMBO J 31: 3282–3296. PubMed PMC
Schlenstedt G, Zimmermann R (1987) Import of frog prepropeptide GLa into microsomes requires ATP but does not involve docking protein or ribosomes. EMBO J 6: 699–703. PubMed PMC
Muller L, de Escauriaza MD, Lajoie P, Theis M, Jung M, et al. (2010) Evolutionary gain of function for the ER membrane protein Sec62 from yeast to humans. Mol Biol Cell 21: 691–703. PubMed PMC
Schlenstedt G, Gudmundsson GH, Boman HG, Zimmermann R (1992) Structural requirements for transport of preprocecropinA and related presecretory proteins into mammalian microsomes. J Biol Chem 267: 24328–24332. PubMed
Trueman SF, Mandon EC, Gilmore R (2012) A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function. J Cell Biol 199: 907–918. PubMed PMC
Jungnickel B, Rapoport TA (1995) A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell 82: 261–270. PubMed
High S, Lecomte FJ, Russell SJ, Abell BM, Oliver JD (2000) Glycoprotein folding in the endoplasmic reticulum: a tale of three chaperones? FEBS letters 476: 38–41. PubMed