Old AIMs of the exocyst: evidence for an ancestral association of exocyst subunits with autophagy-associated Atg8 proteins
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24305598
PubMed Central
PMC4091244
DOI
10.4161/psb.27099
PII: 27099
Knihovny.cz E-zdroje
- Klíčová slova
- Atg8, EXO70, Physcomitrella, Selaginella, autophagy, dicots, evolution, exocyst, monocots, protein sequence patterns,
- MeSH
- aminokyselinové motivy MeSH
- Arabidopsis cytologie metabolismus MeSH
- autofagie * MeSH
- fylogeneze MeSH
- podjednotky proteinů chemie metabolismus MeSH
- rostlinné proteiny chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- podjednotky proteinů MeSH
- rostlinné proteiny MeSH
In a recent addendum, Oren Tzfadia and Gad Galili (PSB 2014; 9:e26732) showed that several Arabidopsis exocyst subunits possess consensus Atg8-interacting motifs (AIMs), which may mediate their interaction with the autophagy-associated Atg8 protein, providing thus a mechanistic base for participation of exocyst (sub)complexes in autophagy. However, the bioinformatically identified AIMs are short peptide motifs that may occur by chance. We thus performed an exhaustive search in a large collection of plant exocyst-derived sequences from our previous bioinformatic study and found that AIMs are over-represented among exocyst subunits of all lineages examined, including moss and club moss, compared with a representative sample of the Arabidopsis proteome. This is consistent with the proposed exocyst AIMs being biologically meaningful and evolutionarily ancient. Moreover, among the numerous EXO70 paralogs, the monocot-specific EXO70F clade appears to be exempt from the general AIM enrichment, suggesting a modification of the autophagy connection in a subset of exocyst variants.
Zobrazit více v PubMed
He B, Guo W. The exocyst complex in polarized exocytosis. Curr Opin Cell Biol. 2009;21:537–42. doi: 10.1016/j.ceb.2009.04.007. PubMed DOI PMC
Zhang Y, Liu CM, Emons AM, Ketelaar T. The plant exocyst. J Integr Plant Biol. 2010;52:138–46. doi: 10.1111/j.1744-7909.2010.00929.x. PubMed DOI
Heider MR, Munson M. Exorcising the exocyst complex. Traffic. 2012;13:898–907. doi: 10.1111/j.1600-0854.2012.01353.x. PubMed DOI PMC
Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, Formstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, et al. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell. 2011;144:253–67. doi: 10.1016/j.cell.2010.12.018. PubMed DOI PMC
Kulich I, Pečenková T, Sekereš J, Smetana O, Fendrych M, Foissner I, Höftberger M, Žárský V. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic. 2013;14:1155–65. PubMed
Tzfadia O, Galili G. The Arabidopsis exocyst subcomplex subunits involved in a golgi-independent transport into the vacuole possess consensus autophagy-associated atg8 interacting motifs. Plant Signal Behav. 2013;9:e26732. doi: 10.4161/psb.26732. PubMed DOI PMC
Honig A, Avin-Wittenberg T, Ufaz S, Galili G. A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell. 2012;24:288–303. doi: 10.1105/tpc.111.093112. PubMed DOI PMC
Yan T, Yoo D, Berardini TZ, Mueller LA, Weems DC, Weng S, Cherry JM, Rhee SY. PatMatch: a program for finding patterns in peptide and nucleotide sequences. Nucleic Acids Res. 2005;33:W262-6. doi: 10.1093/nar/gki368. PubMed DOI PMC
Cvrčková F, Grunt M, Bezvoda R, Hála M, Kulich I, Rawat A, Žárský V. Evolution of the land plant exocyst complexes. Front Plant Sci. 2012;3:159. doi: 10.3389/fpls.2012.00159. PubMed DOI PMC
Eliáš M, Drdová E, Žiak D, Bavlnka B, Hála M, Cvrčková F, Soukupová H, Žárský V. The exocyst complex in plants. Cell Biol Int. 2003;27:199–201. doi: 10.1016/S1065-6995(02)00349-9. PubMed DOI
Synek L, Schlager N, Eliás M, Quentin M, Hauser MT, Žárský V. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 2006;48:54–72. doi: 10.1111/j.1365-313X.2006.02854.x. PubMed DOI PMC
Chong YT, Gidda SK, Sanford C, Parkinson J, Mullen RT, Goring DR. Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol. 2010;185:401–19. doi: 10.1111/j.1469-8137.2009.03070.x. PubMed DOI
Pečenková T, Hála M, Kulich I, Kocourková D, Drdová E, Fendrych M, Toupalová H, Žárský V. The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J Exp Bot. 2011;62:2107–16. doi: 10.1093/jxb/erq402. PubMed DOI PMC
Noda NN, Ohsumi Y, Inagaki F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 2010;584:1379–85. doi: 10.1016/j.febslet.2010.01.018. PubMed DOI
Guo Z, Stiller JW. Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs. BMC Genomics. 2004;5:69. doi: 10.1186/1471-2164-5-69. PubMed DOI PMC
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol Direct. 2013;8:8. doi: 10.1186/1745-6150-8-8. PubMed DOI PMC