Dissociated GαGTP and Gβγ protein subunits are the major activated form of heterotrimeric Gi/o proteins
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24307173
PubMed Central
PMC3894313
DOI
10.1074/jbc.m113.493643
PII: S0021-9258(20)33609-7
Knihovny.cz E-resources
- Keywords
- Adrenergic Receptor, Cell Signaling, Heterotrimeric G Proteins, Membrane Proteins, Microscopic Imaging, Plasma Membrane, Potassium Channels, Two-photon Polarization Microscopy,
- MeSH
- Enzyme Activation physiology MeSH
- HEK293 Cells MeSH
- Humans MeSH
- GAP-43 Protein genetics metabolism MeSH
- GTP-Binding Protein alpha Subunits, Gi-Go genetics metabolism MeSH
- GTP-Binding Protein beta Subunits genetics metabolism MeSH
- GTP-Binding Protein gamma Subunits genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- GAP-43 Protein MeSH
- GTP-Binding Protein alpha Subunits, Gi-Go MeSH
- GTP-Binding Protein beta Subunits MeSH
- GTP-Binding Protein gamma Subunits MeSH
Although most heterotrimeric G proteins are thought to dissociate into Gα and Gβγ subunits upon activation, the evidence in the Gi/o family has long been inconsistent and contradictory. The Gi/o protein family mediates inhibition of cAMP production and regulates the activity of ion channels. On the basis of experimental evidence, both heterotrimer dissociation and rearrangement have been postulated as crucial steps of Gi/o protein activation and signal transduction. We have now investigated the process of Gi/o activation in living cells directly by two-photon polarization microscopy and indirectly by observations of G protein-coupled receptor kinase-derived polypeptides. Our observations of existing fluorescently labeled and non-modified Gαi/o constructs indicate that the molecular mechanism of Gαi/o activation is affected by the presence and localization of the fluorescent label. All investigated non-labeled, non-modified Gi/o complexes dissociate extensively upon activation. The dissociated subunits can activate downstream effectors and are thus likely to be the major activated Gi/o form. Constructs of Gαi/o subunits fluorescently labeled at the N terminus (GAP43-CFP-Gαi/o) seem to faithfully reproduce the behavior of the non-modified Gαi/o subunits. Gαi constructs labeled within the helical domain (Gαi-L91-YFP) largely do not dissociate upon activation, yet still activate downstream effectors, suggesting that the dissociation seen in non-modified Gαi/o proteins is not required for downstream signaling. Our results appear to reconcile disparate published data and settle a long running dispute.
See more in PubMed
Vilardaga J. P., Bünemann M., Feinstein T. N., Lambert N., Nikolaev V. O., Engelhardt S., Lohse M. J., Hoffmann C. (2009) GPCR and G proteins. Drug efficacy and activation in live cells. Mol. Endocrinol. 23, 590–599 PubMed PMC
Lambert N. A. (2008) Dissociation of heterotrimeric g proteins in cells. Sci. Signal. 1, re5. PubMed
Oldham W. M., Hamm H. E. (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71 PubMed
Yuan C., Sato M., Lanier S. M., Smrcka A. V. (2007) Signaling by a non-dissociated complex of G protein βγ and α subunits stimulated by a receptor-independent activator of G protein signaling, AGS8. J. Biol. Chem. 282, 19938–19947 PubMed
Gilman A. G. (1987) G proteins. Transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649 PubMed
Levitzki A. (1988) From epinephrine to cyclic AMP. Science 241, 800–806 PubMed
Hommers L. G., Klenk C., Dees C., Bünemann M. (2010) G proteins in reverse mode. Receptor-mediated GTP release inhibits G protein and effector function. J. Biol. Chem. 285, 8227–8233 PubMed PMC
Katada T., Northup J. K., Bokoch G. M., Ui M., Gilman A. G. (1984) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition. J. Biol. Chem. 259, 3578–3585 PubMed
Higashijima T., Ferguson K. M., Smigel M. D., Gilman A. G. (1987) The effect of GTP and Mg2+ on the GTPase activity and the fluorescent properties of Go. J. Biol. Chem. 262, 757–761 PubMed
Levitzki A., Klein S. (2002) G-protein subunit dissociation is not an integral part of G-protein action. ChemBioChem 3, 815–818 PubMed
Bünemann M., Frank M., Lohse M. J. (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl. Acad. Sci. U.S.A. 100, 16077–16082 PubMed PMC
Frank M., Thümer L., Lohse M. J., Bünemann M. (2005) G Protein activation without subunit dissociation depends on a Gα(i)-specific region. J. Biol. Chem. 280, 24584–24590 PubMed
Galés C., Van Durm J. J., Schaak S., Pontier S., Percherancier Y., Audet M., Paris H., Bouvier M. (2006) Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat. Struct. Mol. Biol. 13, 778–786 PubMed
Gibson S. K., Gilman A. G. (2006) Giα and Gβ subunits both define selectivity of G protein activation by α2-adrenergic receptors. Proc. Natl. Acad. Sci. U.S.A. 103, 212–217 PubMed PMC
Azpiazu I., Akgoz M., Kalyanaraman V., Gautam N. (2006) G protein βγ11 complex translocation is induced by Gi, Gq and Gs coupling receptors and is regulated by the α subunit type. Cell. Signal. 18, 1190–1200 PubMed PMC
Digby G. J., Lober R. M., Sethi P. R., Lambert N. A. (2006) Some G protein heterotrimers physically dissociate in living cells. Proc. Natl. Acad. Sci. U.S.A. 103, 17789–17794 PubMed PMC
Oldham W. M., Hamm H. E. (2006) Structural basis of function in heterotrimeric G proteins. Q. Rev. Biophys. 39, 117–166 PubMed
Lazar J., Bondar A., Timr S., Firestein S. J. (2011) Two-photon polarization microscopy reveals protein structure and function. Nat. Meth. 8, 684–690 PubMed
Hollins B., Kuravi S., Digby G. J., Lambert N. A. (2009) The c-terminus of GRK3 indicates rapid dissociation of G protein heterotrimers. Cell. Signal. 21, 1015–1021 PubMed PMC
Lodowski D. T., Pitcher J. A., Capel W. D., Lefkowitz R. J., Tesmer J. J. (2003) Keeping G proteins at bay. A complex between G protein-coupled receptor kinase 2 and Gβγ. Science 300, 1256–1262 PubMed
Ford C. E., Skiba N. P., Bae H., Daaka Y., Reuveny E., Shekter L. R., Rosal R., Weng G., Yang C. S., Iyengar R., Miller R. J., Jan L. Y., Lefkowitz R. J., Hamm H. E. (1998) Molecular basis for interactions of G protein βγ subunits with effectors. Science 280, 1271–1274 PubMed
Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 PubMed
Leaney J. L., Benians A., Graves F. M., Tinker A. (2002) A novel strategy to engineer functional fluorescent inhibitory G-protein α subunits. J. Biol. Chem. 277, 28803–28809 PubMed
Coleman D. E., Berghuis A. M., Lee E., Linder M. E., Gilman A. G., Sprang S. R. (1994) Structures of active conformations of Gi α 1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 PubMed
Bourne H. R., Sanders D. A., McCormick F. (1991) The GTPase superfamily. Conserved structure and molecular mechanism. Nature 349, 117–127 PubMed
Vorobiov D., Bera A. K., Keren-Raifman T., Barzilai R., Dascal N. (2000) Coupling of the muscarinic m2 receptor to G protein-activated K+ channels via Gα(z) and a receptor-Gα(z) fusion protein. Fusion between the receptor and Gα(z) eliminates catalytic (collision) coupling. J. Biol. Chem. 275, 4166–4170 PubMed
Digby G. J., Sethi P. R., Lambert N. A. (2008) Differential dissociation of G protein heterotrimers. J. Physiol. 586, 3325–3335 PubMed PMC
Fung B. K. (1983) Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits. J. Biol. Chem. 258, 10495–10502 PubMed
Chidiac P., Ross E. M. (1999) Phospholipase C-β1 directly accelerates GTP hydrolysis by Gαq and acceleration is inhibited by Gβγ subunits. J. Biol. Chem. 274, 19639–19643 PubMed
Berlin S., Keren-Raifman T., Castel R., Rubinstein M., Dessauer C. W., Ivanina T., Dascal N. (2010) Gα(i) and Gβγ jointly regulate the conformations of a Gβγ effector, the neuronal G protein-activated K+ channel (GIRK). J. Biol. Chem. 285, 6179–6185 PubMed PMC
Berlin S., Tsemakhovich V. A., Castel R., Ivanina T., Dessauer C. W., Keren-Raifman T., Dascal N. (2011) Two distinct aspects of coupling between Gα(i) protein and G protein-activated K+ channel (GIRK) revealed by fluorescently labeled Gα(i3) protein subunits. J. Biol. Chem. 286, 33223–33235 PubMed PMC
Chisari M., Saini D. K., Cho J. H., Kalyanaraman V., Gautam N. (2009) G protein subunit dissociation and translocation regulate cellular response to receptor stimulation. PLoS ONE 4, e7797. PubMed PMC
Wall M. A., Coleman D. E., Lee E., Iñiguez-Lluhi J. A., Posner B. A., Gilman A. G., Sprang S. R. (1995) The structure of the G protein heterotrimer Giα1β1γ2. Cell 83, 1047–1058 PubMed
Wall M. A., Posner B. A., Sprang S. R. (1998) Structural basis of activity and subunit recognition in G protein heterotrimers. Structure 6, 1169–1183 PubMed
Serotonin 5-HT7 receptor slows down the Gs protein: a single molecule perspective
The G protein Gi1 exhibits basal coupling but not preassembly with G protein-coupled receptors