Circulating C19MC microRNAs in preeclampsia, gestational hypertension, and fetal growth restriction
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24347821
PubMed Central
PMC3848305
DOI
10.1155/2013/186041
Knihovny.cz E-zdroje
- MeSH
- hypertenze indukovaná těhotenstvím genetika MeSH
- lidé MeSH
- mikro RNA krev MeSH
- preeklampsie genetika MeSH
- regulace genové exprese MeSH
- růstová retardace plodu genetika MeSH
- stupeň závažnosti nemoci MeSH
- těhotenství krev MeSH
- ultrasonografie dopplerovská MeSH
- Check Tag
- lidé MeSH
- těhotenství krev MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
The objective of the study was to identify the profile of circulating C19MC microRNAs (miR-516-5p, miR-517*, miR-518b, miR-520a*, miR-520h, miR-525, and miR-526a) in patients with established preeclampsia (n = 63), fetal growth restriction (n = 27), and gestational hypertension (n = 23). We examined the correlation between plasmatic concentrations and expression levels of microRNAs and the severity of the disease with respect to clinical signs, requirements for the delivery, and Doppler ultrasound parameters. Using absolute and relative quantification approaches, increased extracellular C19MC microRNA levels (miR-516-5p, P = 0.037, P = 0.009; miR-517*, P = 0.033, P = 0.043; miR-520a*, P = 0.001, P = 0.009; miR-525, P = 0.026, P = 0.01; miR-526a, P = 0.03, P = 0.035) were detected in patients with preeclampsia. The association analysis pointed to no relationship between C19MC microRNA plasmatic concentrations and expression profile and identified risk factors for a poorer perinatal outcome. However, the dependence between the levels of plasmatic C19MC microRNAs and the pulsatility index in the middle cerebral artery and the values of cerebroplacental ratio was demonstrated. The study brought the interesting finding that the upregulation of miR-516-5p, miR-517*, miR-520a*, miR-525, and miR-526a is a characteristic phenomenon of established preeclampsia.
Zobrazit více v PubMed
Redman CWG, Sargent IL. Preeclampsia and the systemic inflammatory response. Seminars in Nephrology. 2004;24(6):565–570. PubMed
Nelson DM. Apoptotic changes occur in syncytiotrophoblast of human placental villi where fibrin type fibrinoid is deposited at discontinuities in the villous trophoblast. Placenta. 1996;17(7):387–391. PubMed
Oudejans CBM, Tjoa ML, Westerman BA, Mulders MAM, Van Wijk IJ, Van Vugt JMG. Circulating trophoblast in maternal blood. Prenatal Diagnosis. 2003;23(2):111–116. PubMed
Huppertz B, Kingdom JCP. Apoptosis in the trophoblast—role of apoptosis in placental morphogenesis. Journal of the Society for Gynecologic Investigation. 2004;11(6):353–362. PubMed
Orozco AF, Bischoff FZ, Horne C, Popek E, Simpson JL, Lewis DE. Hypoxia-induced membrane-bound apoptotic DNA particles: potential mechanism of fetal DNA in maternal plasma. Annals of the New York Academy of Sciences. 2006;1075:57–62. PubMed
Hromadnikova I. Extracellular nucleic acids in maternal circulation as potential biomarkers for placental insufficiency. DNA and Cell Biology. 2012;31(7):1221–1232. PubMed PMC
Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308(5728):1592–1594. PubMed
Khong TY, De Wolf F, Robertson WB, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. British Journal of Obstetrics and Gynaecology. 1986;93(10):1049–1059. PubMed
WHO. World Health Organization International Collaborative Study of Hypertensive Disorders in Pregnancy. Geographic variation in the incidence of hypertension in pregnancy. American Journal of Obstetrics and Gynecology. 1988;158(1):80–83. PubMed
Bamfo JE, Odibo AO. Diagnosis and management of fetal growth restriction. Journal of Pregnancy. 2011;2011:15 pages.640715 PubMed PMC
ACOG Committee on Practise Bulletins-Obstetrics. Diagnosis and management of preeclampsia and eclampsia. Obstetrics and Gynecology. 2002;99(1):159–167. PubMed
Khan KS, Wojdyla D, Say L, Gülmezoglu AM, Van Look PF. WHO analysis of causes of maternal death: a systematic review. The Lancet. 2006;367(9516):1066–1074. PubMed
Germain SJ, Sacks GP, Soorana SR, Sargent IL, Redman CW. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. Journal of Immunology. 2007;178(9):5949–5956. PubMed
Reddy A, Zhong XY, Rusterholz C, et al. The effect of labour and placental separation on the shedding of syncytiotrophoblast microparticles, cell-free DNA and mRNA in normal pregnancy and pre-eclampsia. Placenta. 2008;29(11):942–949. PubMed
Poon LCY, Akolekar R, Lachmann R, Beta J, Nicolaides KH. Hypertensive disorders in pregnancy: screening by biophysical and biochemical markers at 11–13 weeks. Ultrasound in Obstetrics and Gynecology. 2010;35(6):662–670. PubMed
Akolekar R, Syngelaki A, Sarquis R, Zvanca M, Nicolaides KH. Prediction of early, intermediate and late pre-eclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks. Prenatal Diagnosis. 2011;31(1):66–74. PubMed
von Dadelszen P, Magee LA, Roberts JM. Subclassification of preeclampsia. Hypertension in Pregnancy. 2003;22(2):143–148. PubMed
Huppertz B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension. 2008;51(4):970–975. PubMed
Valensise H, Vasapollo B, Gagliardi G, Novelli GP. Early and late preeclampsia: two different maternal hemodynamic states in the latent phase of the disease. Hypertension. 2008;52(5):873–880. PubMed
Dennis Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. The Lancet. 1997;350(9076):485–487. PubMed
Smid M, Vassallo A, Lagona F, et al. Quantitative analysis of fetal DNA in maternal plasma in pathological conditions associated with placental abnormalities. Annals of the New York Academy of Sciences. 2001;945:132–137. PubMed
Caramelli E, Rizzo N, Concu M, et al. Cell-free fetal DNA concentration in plasma of patients with abnormal uterine artery Doppler waveform and intrauterine growth restriction—a pilot study. Prenatal Diagnosis. 2003;23(5):367–371. PubMed
Costa J-M, Benachi A, Gautier E. New strategy for prenatal diagnosis of X-linked disorders. New England Journal of Medicine. 2002;346(19):p. 1502. PubMed
Rijnders RJ, van der Schoot CE, Bossers B, de Vroede MA, Christiaens GC. Fetal sex determination from maternal plasma in pregnancies at risk for congenital adrenal hyperplasia. Obstetetrics and Gynecology. 2001;98(3):374–378. PubMed
Faas BHW, Beuling EA, Christiaens GCML, Von Dem Borne AEGK, Van Der Schoot CE. Detection of fetal RHD-specific sequences in maternal plasma. The Lancet. 1998;352(9135):p. 1196. PubMed
Lo YMD, Hjelm NM, Fidler C, et al. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. New England Journal of Medicine. 1998;339(24):1734–1738. PubMed
Hromadnikova I, Vechetova L, Vesela K, Benesova B, Doucha J, Vlk R. Non-invasive fetal RHD and RHCE genotyping using real-time PCR testing of maternal plasma in RhD-negative pregnancies. Journal of Histochemistry and Cytochemistry. 2005;53(3):301–305. PubMed
Chan KCA, Ding C, Gerovassili A, et al. Hypermethylated RASSF1A in maternal plasma: a universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clinical Chemistry. 2006;52(12):2211–2218. PubMed
Lo YMD, Leung TN, Tein MSC, et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clinical Chemistry. 1999;45(2):184–188. PubMed
Lau T-W, Leung TN, Chan LYS, et al. Fetal DNA clearance from maternal plasma is impaired in preeclampsia. Clinical Chemistry. 2002;48(12):2141–2146. PubMed
Byrne BM, Crowley A, Taulo F, Anthony J, O’Leary JJ, O’Herlihy C. Fetal DNA quantitation in peripheral blood is not useful as a marker of disease severity in women with preeclampsia. Hypertension in Pregnancy. 2003;22(2):157–164. PubMed
Sekizawa A, Jimbo M, Saito H, et al. Cell-free fetal DNA in the plasma of pregnant women with severe fetal growth restriction. American Journal of Obstetrics and Gynecology. 2003;188(2):480–484. PubMed
Tsui DWY, Chan KCA, Chim SSC, et al. Quantitative aberrations of hypermethylated RASSF1A gene sequences in maternal plasma in pre-eclampsia. Prenatal Diagnosis. 2007;27(13):1212–1218. PubMed
Hromadnikova I, Benesova M, Zejskova L, et al. The effect of DYS-14 copy number variations on extracellular fetal DNA quantification in maternal circulation. DNA and Cell Biology. 2009;28(7):351–358. PubMed
Hromadnikova I, Zejskova L, Kotlabova K, et al. Quantification of extracellular DNA using hypermethylated RASSF1A, SRY, and GLO sequences—evaluation of diagnostic possibilities for predicting placental insufficiency. DNA and Cell Biology. 2010;29(6):295–301. PubMed
Pineles BL, Romero R, Montenegro D, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. American Journal of Obstetrics and Gynecology. 2007;196(3):261.e1–261.e6. PubMed
Zhu X-M, Han T, Sargent IL, Yin G-W, Yao Y-Q. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. American Journal of Obstetrics and Gynecology. 2009;200(6):661.e1–661.e7. PubMed
Hu Y, Li P, Hao S, Liu L, Zhao J, Hou Y. Differential expression of microRNAs in the placentae of Chinese patients with severe pre-eclampsia. Clinical Chemistry and Laboratory Medicine. 2009;47(8):923–929. PubMed
Chim SSC, Shing TKF, Hung ECW, et al. Detection and characterization of placental microRNAs in maternal plasma. Clinical Chemistry. 2008;54(3):482–490. PubMed
Lai EC. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genetics. 2002;30(4):363–364. PubMed
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297. PubMed
Gunel T, Zeybek ZG, Akçakaya P, et al. Serum microRNA expression in pregnancies with preeclampsia. Genetics and Moecular Research. 2011;10(4):4034–4040. PubMed
Yang Q, Lu J, Wang S, Li H, Ge Q, Lu Z. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clinica Chimica Acta. 2011;412(23-24):2167–2173. PubMed
Wu L, Zhou H, Lin H, et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction. 2012;143(3):389–397. PubMed
Mouillet J-F, Chu T, Hubel CA, Nelson DM, Parks WT, Sadovsky Y. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta. 2010;31(9):781–784. PubMed PMC
Seitz H, Royo H, Bortolin M-L, Lin S-P, Ferguson-Smith AC, Cavaillé J. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Research. 2004;14(9):1741–1748. PubMed PMC
Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007;8, article 166 PubMed PMC
Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics. 2005;37(7):766–770. PubMed
Lin S, Cheung WKC, Chen S, et al. Computational identification and characterization of primate-specific microRNAs in human genome. Computational Biology and Chemistry. 2010;34(4):232–241. PubMed
Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR. Pregnancy-associated miRNA-clusters. Journal of Reproductive Immunology. 2013;97(1):51–61. PubMed
Kotlabova K, Doucha J, Hromadnikova I. Placental-specific microRNA in maternal circulation—identification of appropriate pregnancy-associated microRNAs with diagnostic potential. Journal of Reproductive Immunology. 2011;89(2):185–191. PubMed
Bortolin-Cavaille M-L, Dance M, Weber M, Cavaille J. C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Research. 2009;37(10):3464–3473. PubMed PMC
MiRNAMap 2.0 [Internet] Department of Biological Science and Technology, Institute of Bioinformatics National Chiao Tung University, Hsinchu, Taiwan, 2013, http://mirnamap.mbc.nctu.edu.tw.
Hromadnikova I, Kotlabova K, Doucha J, Dlouha K, Krofta L. Absolute and relative quantification of placenta-specific microRNAs in maternal circulation with placental insufficiency—related complications. Journal of Molecular Diagnostics. 2012;14(2):160–167. PubMed
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402–408. PubMed
Maccani MA, Padbury JF, Marsit CJ. miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS ONE. 2011;6(6)e21210 PubMed PMC
Expression profile of C19MC microRNAs in placental tissue in pregnancy-related complications