Longer-term and short-term variability in pollution of fluvial sediments by dioxin-like and endocrine disruptive compounds

. 2014 Apr ; 21 (7) : 5007-22. [epub] 20131222

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24363052

Changes in pollutant loads in relatively dynamic river sediments, which contain very complex mixtures of compounds, can play a crucial role in the fate and effects of pollutants in fluvial ecosystems. The contamination of sediments by bioactive substances can be sensitively assessed by in vitro bioassays. This is the first study that characterizes detailed short- and long-term changes in concentrations of contaminants with several modes of action in river sediments. One-year long monthly study described seasonal and spatial variability of contamination of sediments in a representative industrialized area by dioxin-like and endocrine disruptive chemicals. There were significant seasonal changes in both antiandrogenic and androgenic as well as dioxin-like potential of river sediments, while there were no general seasonal trends in estrogenicity. Aryl hydrocarbon receptor-dependent potency (dioxin-like potency) expressed as biological TCDD-equivalents (BIOTEQ) was in the range of 0.5-17.7 ng/g, dry mass (dm). The greatest BIOTEQ levels in sediments were observed during winter, particularly at locations downstream of the industrial area. Estrogenicity expressed as estradiol equivalents (EEQ) was in the range of 0.02-3.8 ng/g, dm. Antiandrogenicity was detected in all samples, while androgenic potency in the range of 0.7-16.8 ng/g, dm dihydrotestosterone equivalents (DHT-EQ) was found in only 30 % of samples, most often during autumn, when antiandrogenicity was the least. PAHs were predominant contaminants among analyzed pollutants, responsible, on average, for 13-21 % of BIOTEQ. Longer-term changes in concentrations of BIOTEQ corresponded to seasonal fluctuations, whereas for EEQ, the inter-annual changes at some locations were greater than seasonal variability during 1 year. The inter- as well as intra-annual variability in concentrations of both BIOTEQ and EEQ at individual sites was greater in spring than in autumn which was related to hydrological conditions in the river. This study stresses the importance of river hydrology and its seasonal variations in the design of effective sampling campaigns, as well as in the interpretation of any monitoring results.

Zobrazit více v PubMed

Environ Pollut. 2012 Jul;166:157-66 PubMed

Sci Total Environ. 2000 Dec 18;263(1-3):161-9 PubMed

Environ Toxicol Chem. 2008 Mar;27(3):519-28 PubMed

Environ Int. 2003 Sep;29(6):861-77 PubMed

Environ Pollut. 1991;69(2-3):237-57 PubMed

Environ Toxicol Chem. 2004 Apr;23(4):945-52 PubMed

Mutat Res. 2001 Oct 18;497(1-2):49-62 PubMed

Environ Sci Pollut Res Int. 2007 Jan;14(1):30-8 PubMed

Environ Sci Pollut Res Int. 2013 May;20(5):2784-94 PubMed

Environ Toxicol Chem. 2011 Oct;30(10):2208-15 PubMed

J Pharm Sci. 1990 Jul;79(7):592-4 PubMed

Chemosphere. 2006 Dec;65(11):2289-96 PubMed

Arch Environ Contam Toxicol. 2008 Jan;54(1):9-19 PubMed

Anal Bioanal Chem. 2009 Jul;394(5):1385-97 PubMed

Toxicol Sci. 2002 Mar;66(1):69-81 PubMed

Water Res. 2011 Jul;45(13):3908-14 PubMed

Chemosphere. 2006 May;63(7):1222-30 PubMed

Chem Res Toxicol. 2008 Apr;21(4):813-23 PubMed

Arch Environ Contam Toxicol. 2002 Aug;43(2):175-85 PubMed

Environ Sci Technol. 2003 Feb 1;37(3):468-74 PubMed

Anal Bioanal Chem. 2011 Jul;400(9):3141-9 PubMed

Environ Toxicol Chem. 2010 Mar;29(3):522-34 PubMed

Philos Trans A Math Phys Eng Sci. 2002 Jul 15;360(1796):1531-43 PubMed

Chemosphere. 2007 Apr;67(6):1080-7 PubMed

Environ Toxicol Chem. 2001 Dec;20(12):2768-77 PubMed

Proc Natl Acad Sci U S A. 2007 May 22;104(21):8897-901 PubMed

Environ Pollut. 2004 Dec;132(3):489-501 PubMed

Environ Int. 2012 Sep 15;45:22-31 PubMed

Anal Chim Acta. 2012 Nov 13;753:57-63 PubMed

Environ Sci Technol. 2005 Nov 1;39(21):8191-8 PubMed

Environ Sci Technol. 2006 Feb 1;40(3):734-40 PubMed

Toxicol In Vitro. 2006 Feb;20(1):18-37 PubMed

Chemosphere. 2008 Oct;73(7):1078-89 PubMed

Environ Toxicol Chem. 2004 Jan;23(1):32-40 PubMed

J Steroid Biochem Mol Biol. 1993 Sep;46(3):355-64 PubMed

Environ Toxicol Chem. 2001 Jul;20(7):1499-506 PubMed

Aquat Toxicol. 2013 Mar 15;128-129:13-24 PubMed

Aquat Toxicol. 2013 Jun 15;134-135:1-10 PubMed

Environ Toxicol Chem. 2012 May;31(5):1053-62 PubMed

Environ Int. 2009 Jan;35(1):43-9 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...