Bioluminescent Vibrio fischeri Assays in the Assessment of Seasonal and Spatial Patterns in Toxicity of Contaminated River Sediments

. 2016 ; 7 () : 1738. [epub] 20161107

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27872614

Several bacteria-based assays, notably Vibrio fischeri luminescence assays, are often used as environmental monitoring tool for toxicity in sediments that may serve as both sinks and secondary source of contamination in aquatic ecosystems. In this study, we used 30-s kinetic bioassays based on V. fischeri to evaluate the toxicity associated to sediments from five localities with different contamination inputs (Morava River and its tributary Drevnice River in the south-eastern part of the Czech Republic). Toxicity assessed as half maximal inhibitory concentration (IC50) over the course of a year-long sampling was compared in bottom sediments and freshly trapped particulate material. Standard approach based on testing of aqueous elutriates was compared with toxicity of whole sediments (contact suspension toxicity). Bottom sediments showed lower toxicity compared to freshly trapped suspended materials in all cases. On the other hand, standardized elutriates induced generally weaker effects than suspended sediments likely due to losses during the extraction process. Toxicity generally increased during winter reaching maximum peaks in early spring months in all five sites. Total organic carbon (TOC) was found to be highly correlated with toxic effects. Toxicity from sites with direct industrial and agricultural water inputs also correlated with concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). Single time point sampling followed by the extraction and testing of elutriates, do not truly reflect the spatial and temporal variability in natural sediments and may lead to underestimation of ecotoxic risks.

Zobrazit více v PubMed

Ahlf W., Hollert H., Neumann-Hensel H., Ricking M. (2002). A guidance for the assessment and evaluation of sediment quality a German Approach based on ecotoxicological and chemical measurements. J. Soils Sediments 2, 37–42. 10.1007/BF02991249 DOI

Ankley G. T., Schubauer-Berigan M. K., Dierkes J. R. (1991). Predicting the toxicity of bulk sediments to aquatic organisms with aqueous test fractions: pore water vs. elutriate. Environ.Toxicol. Chem. 10, 1359–1366. 10.1002/etc.5620101015 DOI

Ayris S., Harrad S. (1999). The fate and persistence of polychlorinated biphenyls in soil. J. Environ. Monit. 1, 395–401. 10.1039/a903017d PubMed DOI

Backe C., Cousins I. T., Larsson P. (2004). PCB in soils and estimated soil-air exchange fluxes of selected PCB congeners in the south of Sweden. Environ. Pollut. 128, 59–72. 10.1016/j.envpol.2003.08.038 PubMed DOI

Baker J. E., Eisenreich S. J., Eadie B. J. (1991). Sediment trap fluxes and benthic recycling of organic carbon, polycyclic aromatic hydrocarbons, and polychlorobiphenyl congeners in Lake Superior. Environ. Sci. Technol. 25, 500–509. 10.1021/es00015a019 DOI

Bednarova Z., Kuta J., Kohut L., Machat J., Klanova J., Holoubek I., et al. (2013). Spatial patterns and temporal changes of heavy metal distributions in river sediments in a region with multiple pollution sources. J. Soils Sediments 13, 1257–1269. 10.1007/s11368-013-0706-2 DOI

Bittner M., Janošek J., Hilscherová K., Giesy J., Holoubek I., Bláha L. (2006). Activation of Ah receptor by pure humic acids. Environ. Toxicol. 21, 338–342. 10.1002/tox.20185 PubMed DOI

Bláha L., Hilscherová K., Cáp T., Klánová J., Machát J., Zeman J., et al. . (2010). Kinetic bacterial bioluminescence assay for contact sediment toxicity testing: relationships with the matrix composition and contamination. Environ. Toxicol. Chem. 29, 507–514. 10.1002/etc.81 PubMed DOI

Brouwer H., Murphy T., McArdle L. (1990). A sediment-contact bioassay with Photobacterium phosphoreum. Environ. Toxicol. Chem. 9, 1353–1358. 10.1897/1552-8618(1990)9[1353:ASBWPP]2.0.CO;2 DOI

Chakraborty P., Sharma B., Babu P. V. R., Yao K. M., Jaychandran S. (2014). Impact of total organic carbon (in sediments) and dissolved organic carbon (in overlying water column) on Hg sequestration by coastal sediments from the central east coast of India. Mar. Pollut. Bull. 79, 342–347. 10.1016/j.marpolbul.2013.11.028 PubMed DOI

Eggleton J., Thomas K. V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ. Int. 30, 973–980. 10.1016/j.envint.2004.03.001 PubMed DOI

Elzerman A. W., Coates J. T. (1987). Hydrophobic organic compounds on sediments: equilibria and kinetics of sorption, in Sources and Fates of Aquatic Pollutants, Advances Chemistry Series 216, Vol. 10, eds Hites R. A., Eisenreich S. J. (Washington, DC: American Chemical Society; ), 263–317. 10.1021/ba-1987-0216.ch010 DOI

Giusto A., Salibián A., Ferrari L. (2014). Biomonitoring toxicity of natural sediments using juvenile Hyalella curvispina (Amphipoda) as test species: evaluation of early effect endpoints. Ecotoxicology 23, 293–303. 10.1007/s10646-013-1173-7 PubMed DOI

Grosbois C., Meybeck M., Horowitz A., Ficht A. (2006). The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994-2000). Sci. Total Environ. 356, 22–37. 10.1016/j.scitotenv.2005.01.049 PubMed DOI

Guo W., He M., Yang Z., Lin C., Quan X., Men B. (2009). Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in Daliao River water system in dry season, China. J. Hazard. Mater. 164, 1379–1385. 10.1016/j.jhazmat.2008.09.083 PubMed DOI

Gust K. A. (2006). Joint toxicity of cadmium and phenanthrene in the freshwater amphipod Hyalella azteca. Arch. Environ. Contam. Toxicol. 50, 7–13. 10.1007/s00244-004-4163-1 PubMed DOI

Guzzella L. (1998). Comparison of test procedures for sediment toxicity evaluation with Vibrio fischeri bacteria. Chemosphere 37, 2895–2909. 10.1016/S0045-6535(98)00331-2 DOI

Hafner C., Gartiser S., Garcia-Käufer M., Schiwy S., Hercher C., Meyer W., et al. . (2015). Investigations on sediment toxicity of German rivers applying a standardized bioassay battery. Environ. Sci. Pollut. Res. Int. 22, 16358–16370. 10.1007/s11356-015-4482-y PubMed DOI

Harkey G. A., Landrum P. F., Klaine S. J. (1994). Comparison of whole-sediment, elutriate and pore-water exposures for use in assessing sediment-associated organic contaminants in bioassays. Environ. Toxicol. Chem. 13, 1315–1329. 10.1002/etc.5620130814 DOI

Hilscherová K., Dusek L., Sídlová T., Jálová V., Cupr P., Giesy J. P., et al. . (2010). Seasonally and regionally determined indication potential of bioassays in contaminated river sediments. Environ. Toxicol. Chem. 29, 522–534. 10.1002/etc.83 PubMed DOI

Hilscherova K., Dusek L., Kubik V., Cupr P., Hofman J., Klanova J., et al. (2007). Redistribution of organic pollutants in river sediments and alluvial soils related to major floods. J. Soils Sediments 7, 167–177. 10.1065/jss2007.04.222 DOI

Ho K. T. Y., Quinn J. G. (1993). Physical and chemical parameters of sediment extraction and fractionation that influence toxicity, as evaluated by microtox®. Environ. Toxicol. Chem. 12, 615–625. 10.1002/etc.5620120403 DOI

Janošek J., Bittner M., Hilscherová K., Bláha L., Giesy J. P., Holoubek I. (2007). AhR-mediated and antiestrogenic activity of humic substances. Chemosphere 67, 1096–1101. 10.1016/j.chemosphere.2006.11.045 PubMed DOI

Kahru A., Tomson K., Pall T., Kulm I. (1996). Study of toxicity of pesticides using luminescent bacteria. Water Sci. Technol. 33, 147–154. 10.1016/0273-1223(96)00292-2 DOI

Kaiser K. L. (1998). Correlations of Vibrio fischeri bacteria test data with bioassay data for other organisms. Environ. Health Perspect. 106(Suppl.), 583–591. 10.1289/ehp.98106583 PubMed DOI PMC

Karickhoff S., Brown D., Scott T. (1979). Sorption of hydrophobic pollutants on natural sediments. Water Res. 13, 241–248. 10.1016/0043-1354(79)90201-X DOI

Lappalainen J., Juvonen R., Nurmi J., Karp M. (2001). Automated color correction method for Vibrio fischeri toxicity test. Comparison of standard and kinetic assays. Chemosphere 45, 635–641. 10.1016/S0045-6535(00)00579-8 PubMed DOI

Lappalainen J., Juvonen R., Vaajasaari K., Karp M. (1999). A new flash method for measuring the toxicity of solid and colored samples. Chemosphere 38, 1069–1083. 10.1016/S0045-6535(98)00352-X DOI

Macikova P., Kalabova T., Klanova J., Kukucka P., Giesy J. P., Hilscherova K. (2014). Longer-term and short-term variability in pollution of fluvial sediments by dioxin-like and endocrine disruptive compounds. Environ. Sci. Pollut. Res. Int. 21, 5007–5022. 10.1007/s11356-013-2429-8 PubMed DOI

Müller A., Heininger P., Wessels M., Pelzer J., Grünwald K., Pfitzner S., et al. (2002). Contaminant levels and ecotoxicological effects in sediments of the river odra. Acta Hydrochim. Hydrobiol. 30, 244–255. 10.1002/aheh.200390006 DOI

Parvez S., Venkataraman C., Mukherji S. (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int. 32, 265–268. 10.1016/j.envint.2005.08.022 PubMed DOI

Parween M., Ramanathan A., Khillare P. S., Raju N. J. (2014). Persistence, variance and toxic levels of organochlorine pesticides in fluvial sediments and the role of black carbon in their retention. Environ. Sci. Pollut. Res. 21, 6525–6546. 10.1007/s11356-014-2531-6 PubMed DOI

Perrichon P., Le Bihanic F., Bustamante P., Le Menach K., Budzinski H., Cachot J., et al. . (2014). Influence of sediment composition on PAH toxicity using zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes) embryo-larval assays. Environ. Sci. Pollut. Res. Int. 21, 13703–13719. 10.1007/s11356-014-3502-7 PubMed DOI

Prokeš R., Vrana B., Komprdová K., Klánová J. (2014). Annual dynamics of persistent organic pollutants in various aquatic matrices: a case study in the Morava River in Zlín district, Czech Republic. J. Soils Sediments 14, 1738–1752. 10.1007/s11368-014-0931-3 DOI

Rosado D., Usero J., Morillo J. (2016). Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary. Chemosphere 153, 10–17. 10.1016/j.chemosphere.2016.03.040 PubMed DOI

Sheik C. S., Mitchell T. W., Rizvi F. Z., Rehman Y., Faisal M., Hasnain S., et al. . (2012). Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS ONE 7:e40059. 10.1371/journal.pone.0040059 PubMed DOI PMC

Smith K. E., Schwab A. P., Banks M. K. (2008). Dissipation of PAHs in saturated, dredged sediments: a field trial. Chemosphere 72, 1614–1619. 10.1016/j.chemosphere.2008.03.020 PubMed DOI

Stachel B., Jantzen E., Knoth W., Krüger F., Lepom P., Oetken M., et al. . (2005). The Elbe flood in August 2002–organic contaminants in sediment samples taken after the flood event. J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 40, 265–87. [Accessed March 14, 2016]. 10.1081/ESE-200045531 PubMed DOI

Tuikka A. I., Schmitt C., Höss S., Bandow N., von der Ohe P. C., de Zwart D., et al. . (2011). Toxicity assessment of sediments from three European river basins using a sediment contact test battery. Ecotoxicol. Environ. Saf. 74, 123–131. 10.1016/j.ecoenv.2010.08.038 PubMed DOI

Vethaak A. D., Hamers T., Martínez-Gòmez C., Kamstra J. H., de Weert J., Leonards P. E. G., et al. . (in press). Toxicity profiling of marine surface sediments: a case study using rapid screening bioassays of exhaustive total extracts, elutriates passive sampler extracts. Mar. Environ. Res. 10.1016/j.marenvres.2016.03.002. PubMed DOI

Volpi Ghirardini A., Girardini M., Marchetto D., Pantani C. (2009). Microtox solid phase test: effect of diluent used in toxicity test. Ecotoxicol. Environ. Saf. 72, 851–861. 10.1016/j.ecoenv.2008.01.011 PubMed DOI

Ward D. J., Simpson S. L., Jolley D. F. (2013). Slow avoidance response to contaminated sediments elicits sublethal toxicity to benthic invertebrates. Environ. Sci. Technol. 47, 5947–5953. 10.1021/es400152a PubMed DOI

Wetzel R. G. (2001). Limnology: Lake and River Ecosystems, 3rd Edn. San Diego, CA: Academic Press.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Influence of Herbicides to Marine Organisms Aliivibrio fischeri and Artemia salina

. 2021 Oct 21 ; 9 (11) : . [epub] 20211021

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...