The Influence of Herbicides to Marine Organisms Aliivibrio fischeri and Artemia salina
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
A1_FTOP_2021_003
University of chemical technology in Prague - Specific university research
PubMed
34822666
PubMed Central
PMC8623538
DOI
10.3390/toxics9110275
PII: toxics9110275
Knihovny.cz E-resources
- Keywords
- Aliivibrio fischeri, Artemia salina, ecotoxicology, glyphosate, herbicides,
- Publication type
- Journal Article MeSH
The aim of this work was to determine the toxic effect of the most used herbicides on marine organisms, the bacterium Aliivibrio fischeri, and the crustacean Artemia salina. The effect of these substances was evaluated using a luminescent bacterial test and an ecotoxicity test. The results showed that half maximal inhibitory concentration for A. fischeri is as follows: 15minIC50 (Roundup® Classic Pro) = 236 μg·L-1, 15minIC50 (Kaput® Premium) = 2475 μg·L-1, 15minIC50 (Banvel® 480 S) = 2637 μg·L-1, 15minIC50 (Lontrel 300) = 7596 μg·L-1, 15minIC50 (Finalsan®) = 64 μg·L-1, 15minIC50 (glyphosate) = 7934 μg·L-1, 15minIC50 (dicamba) = 15,937 μg·L-1, 15minIC50 (clopyralid) = 10,417 μg·L-1, 15minIC50 (nonanoic acid) = 16,040 μg·L-1. Median lethal concentrations for A. salina were determined as follows: LC50 (Roundup® Classic Pro) = 18 μg·L-1, LC50 (Kaput® Premium) = 19 μg·L-1, LC50 (Banvel® 480 S) = 2519 μg·L-1, LC50 (Lontrel 300) = 1796 μg·L-1, LC50 (Finalsan®) = 100 μg·L-1, LC50 (glyphosate) = 811 μg·L-1, LC50 (dicamba) = 3705 μg·L-1, LC50 (clopyralid) = 2800 μg·L-1, LC50 (nonanoic acid) = 7493 μg·L-1. These findings indicate the need to monitor the herbicides used for all environmental compartments.
See more in PubMed
Varanasi A., Prasad P.V.V., Jugulam M. Impact of Climate Change Factors on Weeds and Herbicide Efficacy. In: Sparks D.L., editor. Advances in Agronomy. Volume 135. Elsevier Academic Press Inc.; San Diego, CA, USA: 2016. pp. 107–146.
Matzenbacher F.O., Vidal R.A., Merotto A., Trezzi M.M. Environmental and Physiological Factors that Affect the Efficacy of Herbicides that Inhibit the Enzyme Protoporphyrinogen oxidase: A Literature Review. Planta Daninha. 2014;32:457–463. doi: 10.1590/S0100-83582014000200024. DOI
Huang X.J., Pedersen T., Fischer M., White R., Young T.M. Herbicide runoff along highways. 1. Field observations. Environ. Sci. Technol. 2004;38:3263–3271. doi: 10.1021/es034847h. PubMed DOI
Sadeghi A., Isensee A., Shirmohammadi A. Influence of Soil Texture and Tillage on Herbicide Transport. Chemosphere. 2000;41:1327–1332. doi: 10.1016/S0045-6535(00)00028-X. PubMed DOI
Jorge L. Herbicides, Physiology of Action and Safety. IntechOpen; London, UK: 2015. Determining the Selectivity of Herbicides and Assessing Their Effect on Plant Roots—A Case Study with Indaziflam and Glyphosate Herbicides. DOI
Winter J.G., Somers K.M., Dillon P.J., Paterson C., Reid R.A. Impacts of golf courses on macroinvertebrate community structure in Precambrian Shield streams. J. Environ. Qual. 2002;31:2015–2025. doi: 10.2134/jeq2002.2015. PubMed DOI
Pedersen J.A., Yeager M.A., Suffet I.H. Organophosphorus insecticides in agricultural and residential runoff: Field observations and implications for total maximum daily load development. Environ. Sci. Technol. 2006;40:2120–2127. doi: 10.1021/es051677v. PubMed DOI
Brodeur J.C., Suarez R.P., Natale G.S., Ronco A.E., Zaccagnini M.E. Reduced body condition and enzymatic alterations in frogs inhabiting intensive crop production areas. Ecotoxicol. Environ. Saf. 2011;74:1370–1380. doi: 10.1016/j.ecoenv.2011.04.024. PubMed DOI
Haith D.A. Ecological Risk Assessment of Pesticide Runoff from Grass Surfaces. Environ. Sci. Technol. 2010;44:6496–6502. doi: 10.1021/es101636y. PubMed DOI
Solomon K.R., Dalhoff K., Volz D., Van Der Kraak G. 7—Effects of Herbicides on Fish. In: Tierney K.B., Farrell A.P., Brauner C.J., editors. Fish Physiology. Volume 33. Academic Press; Cambridge, MA, USA: 2013. pp. 369–409.
Catania P., Inglese P., Pipitone F., Vallone M. Assessment of the Wind Influence on Spray Application using an Artificial Vineyard. Eur. J. Hortic. Sci. 2011;76:102–108.
Baetens K., Ho Q.T., Nuyttens D., De Schampheleire M., Endalew A.M., Hertog M., Nicolai B., Ramon H., Verboven P. A validated 2-D diffusion-advection model for prediction of drift from ground boom sprayers. Atmos. Environ. 2009;43:1674–1682. doi: 10.1016/j.atmosenv.2008.12.047. DOI
Baio F.H.R., Antuniassi U.R., Castilho B.R., Teodoro P.E., da Silva E.E. Factors affecting aerial spray drift in the Brazilian Cerrado. PLoS ONE. 2019;14:e0217957. doi: 10.1371/journal.pone.0217957. PubMed DOI PMC
Bouse L.F. Effect of nozzle type and operation on spray droplet size. Trans. ASAE. 1994;37:1389–1400. doi: 10.13031/2013.28219. DOI
Smith S.K., Franti T.G., Comfort S.D. Impact of Initial Soil Water Content, Crop Residue Cover, and Post–herbicide Irrigation on Herbicide Runoff. Trans. ASAE. 2002;45:1817. doi: 10.13031/2013.11432. DOI
Postigo C., de Alda M.J.L., Barcelo D., Ginebreda A., Garrido T., Fraile J. Analysis and occurrence of selected medium to highly polar pesticides in groundwater of Catalonia (NE Spain): An approach based on on-line solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry detection. J. Hydrol. 2010;383:83–92. doi: 10.1016/j.jhydrol.2009.07.036. DOI
Landis D., Saidov N., Jaliov A., El Bouhssini M., Kennelly M., Bahlai C., Landis J., Maredia K. Demonstration of an Integrated Pest Management Program for Wheat in Tajikistan. J. Integr. Pest Manag. 2016;7:11. doi: 10.1093/jipm/pmw010. PubMed DOI PMC
Cozad A., Mudge C., Diaz R. Integrated management of giant salvinia using herbicides and the salvinia weevil. J. Aquat. Plant Manag. 2019;57:62–68.
Jannoyer M., Le Bellec F., Lavigne C., Achard R., Malézieux E. Choosing cover crops to enhance ecological services in orchards: A multiple criteria and systemic approach applied to tropical areas. Procedia Environ. Sci. 2011;9:104–112. doi: 10.1016/j.proenv.2011.11.017. DOI
Mullin C.A., Chen J., Fine J.D., Frazier M.T., Frazier J.L. The formulation makes the honey bee poison. Pestic. Biochem. Physiol. 2015;120:27–35. doi: 10.1016/j.pestbp.2014.12.026. PubMed DOI
Katagi T. Surfactant effects on environmental behavior of pesticides. Rev. Environ. Contam. Toxicol. 2008;194:71–177. doi: 10.1007/978-0-387-74816-0_4. PubMed DOI
Mesnage R., Antoniou M.N. Ignoring Adjuvant Toxicity Falsifies the Safety Profile of Commercial Pesticides. Front. Public Health. 2018;5:361. doi: 10.3389/fpubh.2017.00361. PubMed DOI PMC
Krogh K.A., Halling-Sørensen B., Mogensen B.B., Vejrup K.V. Environmental properties and effects of nonionic surfactant adjuvants in pesticides: A review. Chemosphere. 2003;50:871–901. doi: 10.1016/S0045-6535(02)00648-3. PubMed DOI
Stahlman P.W., Phillips W.M. Inhibition of Glyphosate Phytotoxicity. Weed Sci. 1979;27:575–577. doi: 10.1017/S0043174500044647. DOI
Cowles R.S., Cowles E.A., Mcdermott A.M., Ramoutar D.N. “Inert” Formulation Ingredients with Activity: Toxicity of Trisiloxane Surfactant Solutions to Twospotted Spider Mites (Acari: Tetranychidae) J. Econ. Entomol. 2000;93:180–188. doi: 10.1603/0022-0493-93.2.180. PubMed DOI
Laha S., Luthy R.G. Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. Biotechnol. Bioeng. 1992;40:1367–1380. doi: 10.1002/bit.260401111. PubMed DOI
Sánchez-Camazano M., Arienzo M., Sánchez-Martín M.J., Crisanto T. Effect of different surfactants on the mobility of selected non-ionic pesticides in soil. Chemosphere. 1995;31:3793–3801. doi: 10.1016/0045-6535(95)00253-5. DOI
Gennari M., Messina C., Abbate C., Baglieri A., Boursier C. Solubility and adsorption behaviors of chlorpyriphos-methyl in the presence of surfactants. J. Environ. Sci. Health Part B. 2009;44:235–240. doi: 10.1080/03601230902728211. PubMed DOI
Rodriguez-Cruz M.S., Sanchez-Martin M.J., Sanchez-Camazano M. Surfactant-enhanced desorption of atrazine and linuron residues as affected by aging of herbicides in soil. Arch. Environ. Contam. Toxicol. 2006;50:128–137. doi: 10.1007/s00244-005-7036-3. PubMed DOI
Freydier L., Lundgren J.G. Unintended effects of the herbicides 2,4-D and dicamba on lady beetles. Ecotoxicology. 2016;25:1270–1277. doi: 10.1007/s10646-016-1680-4. PubMed DOI
Zhu W., Schmehl D.R., Mullin C.A., Frazier J.L. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS ONE. 2014;9:e77547. doi: 10.1371/journal.pone.0077547. PubMed DOI PMC
Pedersen S.N., Christiansen L.B., Pedersen K.L., Korsgaard B., Bjerregaard P. In vivo estrogenic activity of branched and linear alkylphenols in rainbow trout (Oncorhynchus mykiss) Sci. Total Environ. 1999;233:89–96. doi: 10.1016/S0048-9697(99)00182-5. PubMed DOI
Fernandes G., Aparicio V.C., Bastos M.C., De Geronimo E., Labanowski J., Prestes O.D., Zanella R., dos Santos D.R. Indiscriminate use of glyphosate impregnates river epilithic biofilms in southern Brazil. Sci. Total Environ. 2019;651:1377–1387. doi: 10.1016/j.scitotenv.2018.09.292. PubMed DOI
Barker A.L., Dayan F.E. Fate of Glyphosate during Production and Processing of Glyphosate-Resistant Sugar Beet (Beta vulgaris) J. Agric. Food Chem. 2019;67:2061–2065. doi: 10.1021/acs.jafc.8b05672. PubMed DOI
Maqueda C., Undabeytia T., Villaverde J., Morillo E. Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Sci. Total Environ. 2017;593:787–795. doi: 10.1016/j.scitotenv.2017.03.202. PubMed DOI
Battaglin W.A., Meyer M., Kuivila K., Dietze J. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation. JAWRA J. Am. Water Resour. Assoc. 2014;50:275–290. doi: 10.1111/jawr.12159. DOI
Skeff W., Neumann C., Schulz-Bull D.E. Glyphosate and AMPA in the estuaries of the Baltic Sea method optimization and field study. Mar. Pollut. Bull. 2015;100:577–585. doi: 10.1016/j.marpolbul.2015.08.015. PubMed DOI
Wirth M.A., Schulz-Bull D.E., Kanwischer M. The challenge of detecting the herbicide glyphosate and its metabolite AMPA in seawater—Method development and application in the Baltic Sea. Chemosphere. 2021;262:128327. doi: 10.1016/j.chemosphere.2020.128327. PubMed DOI
Matozzo V., Marin M.G., Masiero L., Tremonti M., Biamonte S., Viale S., Finos L., Lovato G., Pastore P., Bogialli S. Effects of aminomethylphosphonic acid, the main breakdown product of glyphosate, on cellular and biochemical parameters of the mussel Mytilus galloprovincialis. Fish Shellfish Immunol. 2018;83:321–329. doi: 10.1016/j.fsi.2018.09.036. PubMed DOI
Matozzo V., Munari M., Masiero L., Finos L., Marin M.G. Ecotoxicological hazard of a mixture of glyphosate and aminomethylphosphonic acid to the mussel Mytilus galloprovincialis (Lamarck 1819) Sci. Rep. 2019;9:14302. doi: 10.1038/s41598-019-50607-0. PubMed DOI PMC
Tajnaiova L., Vurm R., Kholomyeva M., Kobera M., Koci V. Determination of the Ecotoxicity of Herbicides Roundup (R) Classic Pro and Garlon New in Aquatic and Terrestrial Environments. Plants. 2020;9:1203. doi: 10.3390/plants9091203. PubMed DOI PMC
Pavan F.A., Samojeden C.G., Rutkoski C.F., Folador A., Da Fre S.P., Muller C., Hartmann P.A., Hartmann M.T. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. Environ. Toxicol. Pharmacol. 2021;85:11. doi: 10.1016/j.etap.2021.103637. PubMed DOI
Liu J.B., Dong C.Y., Zhai Z.Z., Tang L., Wang L. Glyphosate-induced lipid metabolism disorder contributes to hepatotoxicity in juvenile common carp. Environ. Pollut. 2021;269:11. doi: 10.1016/j.envpol.2020.116186. PubMed DOI
Ren X., Dai P.Y., Perveen A., Tang Q., Zhao L.Y., Jia X., Li Y.S., Li C.M. Effects of chronic glyphosate exposure to pregnant mice on hepatic lipid metabolism in offspring. Environ. Pollut. 2019;254:8. doi: 10.1016/j.envpol.2019.07.074. PubMed DOI
Sterling T.M., Hal J. Mechanism of action of natural auxins and the auxinic herbicides. Rev. Toxicol. 1997;1:111–142.
Grossmann K. Auxin herbicides: Current status of mechanism and mode of action. Pest Manag. Sci. 2010;66:113–120. doi: 10.1002/ps.1860. PubMed DOI
Quareshy M., Prusinska J., Li J., Napier R. A cheminformatics review of auxins as herbicides. J. Exp. Bot. 2018;69:265–275. doi: 10.1093/jxb/erx258. PubMed DOI
Flasiński M., Hąc-Wydro K. Natural vs. synthetic auxin: Studies on the interactions between plant hormones and biological membrane lipids. Environ. Res. 2014;133:123–134. doi: 10.1016/j.envres.2014.05.019. PubMed DOI
Hu T., Dryhurst G. Electrochemical and peroxidase O2-mediated oxidation of indole-3-acetic acid at physiological pH. J. Electroanal. Chem. 1997;432:7–18. doi: 10.1016/S0022-0728(97)00227-1. DOI
Spaepen S., Vanderleyden J. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 2011;3:a001438. doi: 10.1101/cshperspect.a001438. PubMed DOI PMC
Krueger J.P., Butz R.G., Cork D.J. Use of dicamba-degrading microorganisms to protect dicamba susceptible plant species. J. Agric. Food Chem. 1991;39:1000–1003. doi: 10.1021/jf00005a040. DOI
Liu J., Zhang X., Bao Y., Zhang K., Qiu J., He Q., Zhu J., He J. Enhanced degradation of dicamba by an anaerobic sludge acclimated from river sediment. Sci. Total Environ. 2021;777:145931. doi: 10.1016/j.scitotenv.2021.145931. DOI
Westlund P., Nasuhoglu D., Isazadeh S., Yargeau V. Investigation of Acute and Chronic Toxicity Trends of Pesticides Using High-Throughput Bioluminescence Assay Based on the Test Organism Vibrio fischeri. Arch. Environ. Contam. Toxicol. 2018;74:557–567. doi: 10.1007/s00244-017-0483-9. PubMed DOI
De Castro Marcato A.C., de Souza C.P., Fontanetti C.S. Herbicide 2,4-D: A Review of Toxicity on Non-Target Organisms. Water Air Soil Pollut. 2017;228:120. doi: 10.1007/s11270-017-3301-0. DOI
Silva L.C.M., Moreira R.A., Pinto T.J.S., Ogura A.P., Yoshii M.P.C., Lopes L.F.P., Montagner C.C., Goulart B.V., Daam M.A., Espíndola E.L.G. Acute and chronic toxicity of 2,4-D and fipronil formulations (individually and in mixture) to the Neotropical cladoceran Ceriodaphnia silvestrii. Ecotoxicology. 2020;29:1462–1475. doi: 10.1007/s10646-020-02275-4. PubMed DOI
Filkowski J., Besplug J., Burke P., Kovalchuk I., Kovalchuk O. Genotoxicity of 2, 4-D and dicamba revealed by transgenic Arabidopsis thaliana plants harboring recombination and point mutation markers. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2003;542:23–32. doi: 10.1016/j.mrgentox.2003.07.008. PubMed DOI
Zhu L.F., Li W., Zha J.M., Wang Z.J. Dicamba affects sex steroid hormone level and mRNA expression of related genes in adult rare minnow (Gobiocypris rarus) at environmentally relevant concentrations. Environ. Toxicol. 2015;30:693–703. doi: 10.1002/tox.21947. PubMed DOI
Corredor M., Mellado J.R., Montoya M.R. EC (EE) process in the reduction of the herbicide clopyralid on mercury electrodes. Electrochim. Acta. 2006;51:4302–4308. doi: 10.1016/j.electacta.2005.12.010. DOI
Donald D.B., Cessna A.J., Sverko E., Glozier N.E. Pesticides in surface drinking-water supplies of the northern Great Plains. Environ. Health Perspect. 2007;115:1183–1191. doi: 10.1289/ehp.9435. PubMed DOI PMC
Tizaoui C., Mezughi K., Bickley R. Heterogeneous photocatalytic removal of the herbicide clopyralid and its comparison with UV/H2O2 and ozone oxidation techniques. Desalination. 2011;273:197–204. doi: 10.1016/j.desal.2010.11.036. DOI
Saito R., Ikenaga O., Ishihara S., Shibata H., Iwafune T., Sato T., Yamashita Y. Determination of herbicide clopyralid residues in crops grown in clopyralid-contaminated soils. J. Pestic. Sci. 2010;35:479–482. doi: 10.1584/jpestics.G10-09. DOI
Abe Y., Tamura K., Seike N. Change of clopyralid concentration in recycled beef cattle compost. Anim. Sci. J. 2021;92:e13568. doi: 10.1111/asj.13568. PubMed DOI
Ebato M., Uegaki R., Sutoh M. Dynamics of clopyralid herbicide during composting in small composting experiment units. J. Pestic. Sci. 2015;40:184–190. doi: 10.1584/jpestics.D14-107. DOI
Watanabe E., Seike N., Namiki S. Highly sensitive analytical method for herbicide clopyralid residue in cattle manure compost with ultraperformance liquid chromatography tandem mass spectrometry. J. Pestic. Sci. 2019;44:186–191. doi: 10.1584/jpestics.D19-023. PubMed DOI PMC
Miltner E., Bary A., Cogger C. Clopyralid and compost: Formulation and mowing effects on herbicide content of grass clippings. Compost Sci. Util. 2003;11:289–299. doi: 10.1080/1065657X.2003.10702138. DOI
Furia T.E. CRC Handbook of Food Additives. Volume 1 CRC Press; Boca Raton, FL, USA: 1973.
Wahlberg J.E., Lindberg M. Nonanoic acid—An experimental irritant. Contact Dermat. 2003;49:117–123. doi: 10.1111/j.0105-1873.2003.00208.x. PubMed DOI
Ciriminna R., Fidalgo A., Ilharco L.M., Pagliaro M. Herbicides based on pelargonic acid: Herbicides of the bioeconomy. Biofuels Bioprod. Biorefin.-Biofpr. 2019;13:1476–1482. doi: 10.1002/bbb.2046. DOI
Nakai S., Yamada S., Hosomi M. Anti-cyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiologia. 2005;543:71–78. doi: 10.1007/s10750-004-6822-7. DOI
Girotti S., Ferri E.N., Fumo M.G., Maiolini E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal. Chim. Acta. 2008;608:2–29. doi: 10.1016/j.aca.2007.12.008. PubMed DOI
Jarque S., Masner P., Klánová J., Prokeš R., Bláha L. Bioluminescent Vibrio fischeri Assays in the Assessment of Seasonal and Spatial Patterns in Toxicity of Contaminated River Sediments. Front. Microbiol. 2016;7:1738. doi: 10.3389/fmicb.2016.01738. PubMed DOI PMC
Giner B., Lafuente C., Lapeña D., Errazquin D., Lomba L. QSAR study for predicting the ecotoxicity of NADES towards Aliivibrio fischeri. Exploring the use of mixing rules. Ecotoxicol. Environ. Saf. 2020;191:110004. doi: 10.1016/j.ecoenv.2019.110004. PubMed DOI
Parvez S., Venkataraman C., Mukherji S. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int. 2006;32:265–268. doi: 10.1016/j.envint.2005.08.022. PubMed DOI
Inouye S. NAD(P)H-Flavin Oxidoreductase from the Bioluminescent Bacterium, Vibrio-Fischeri ATCC-7744, IS A Flavoprotein. FEBS Lett. 1994;347:163–168. doi: 10.1016/0014-5793(94)00528-1. PubMed DOI
Yang X., Ji Y., Wang F., Xu J., Liu X., Ma K., Hu X., Ye J. Comparison of organics and heavy metals acute toxicities to Vibrio fischeri. J. Serb. Chem. Soc. 2016;81:11. doi: 10.2298/JSC151124011Y. DOI
Nunes B.S., Carvalho F.D., Guilhermino L.M., Van Stappen G. Use of the genus Artemia in ecotoxicity testing. Environ. Pollut. 2006;144:453–462. doi: 10.1016/j.envpol.2005.12.037. PubMed DOI
Persoone G., Wells P.G. Artemia in aquatic toxicology: A review. Artemia Res. Appl. 1987;1:259–275.
Asem A., Rastegar-Pouyani N., De Los Rios-Escalante P. The genus Artemia Leach, 1819 (Crustacea: Branchiopoda). I. True and false taxonomical descriptions. Lat. Am. J. Aquat. Res. 2010;38:501–506. doi: 10.3856/vol38-issue3-fulltext-14. DOI
Vanhaecke P., Persoone G., Claus C., Sorgeloos P. Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicol. Environ. Saf. 1981;5:382–387. doi: 10.1016/0147-6513(81)90012-9. PubMed DOI
Reddy S., Osborne W.J. Heavy metal determination and aquatic toxicity evaluation of textile dyes and effluents using Artemia salina. Biocatal. Agric. Biotechnol. 2020;25:8. doi: 10.1016/j.bcab.2020.101574. DOI
Triantaphyllidis G.V., Abatzopoulos T.J., Sorgeloos P. Review of the biogeography of the genus Artemia (Crustacea, Anostraca) J. Biogeogr. 1998;25:213–226. doi: 10.1046/j.1365-2699.1998.252190.x. DOI
Bowen S.T., Buoncristiani M.R., Carl J.R. Artemia Habitats—Ion Concentrations Tolerated by One Superspecies. Hydrobiologia. 1988;158:201–214. doi: 10.1007/BF00026278. DOI
Amat F. Biología de Artemia. Inf. Téc. Inst. Investig. Pesq. 1985;126:1–60.
Barahona M.V., Sanchez-Fortun S. Toxicity of carbamates to the brine shrimp Artemia salina and the effect of atropine, BW284c51, iso-OMPA and 2-PAM on carbaryl toxicity. Environ. Pollut. 1999;104:469–476. doi: 10.1016/S0269-7491(98)00152-3. DOI
Umarani R., Kumaraguru A.K., Nagarani N. Investigation of acute toxicity of heavy metals in Artemia salina acclimated to different salinity. Toxicol. Environ. Chem. 2012;94:1547–1556. doi: 10.1080/02772248.2012.713235. DOI
Motta C.M., Simoniello P., Arena C., Capriello T., Panzuto R., Vitale E., Agnisola C., Tizzano M., Avallone B., Ferrandino I. Effects of four food dyes on development of three model species, Cucumis sativus, Artemia salina and Danio rerio: Assessment of potential risk for the environment. Environ. Pollut. 2019;253:1126–1135. doi: 10.1016/j.envpol.2019.06.018. PubMed DOI
Arulvasu C., Jennifer S.M., Prabhu D., Chandhirasekar D. Toxicity Effect of Silver Nanoparticles in Brine Shrimp Artemia. Sci. World J. 2014;2014:256919. doi: 10.1155/2014/256919. PubMed DOI PMC
Sanchez-Bayo F. Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchlopoda, Copepoda and Ostracoda. Environ. Pollut. 2006;139:385–420. doi: 10.1016/j.envpol.2005.06.016. PubMed DOI
Benbrook C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016;28:3. doi: 10.1186/s12302-016-0070-0. PubMed DOI PMC
Jacquet F., Delame N., Vita J.L., Huyghe C., Reboud X. The micro-economic impacts of a ban on glyphosate and its replacement with mechanical weeding in French vineyards. Crop Prot. 2021;150:105778. doi: 10.1016/j.cropro.2021.105778. DOI
Da Silva K.A., Nicola V.B., Dudas R.T., Demetrio W.C., Maia L.d.S., Cunha L., Bartz M.L.C., Brown G.G., Pasini A., Kille P., et al. Pesticides in a case study on no-tillage farming systems and surrounding forest patches in Brazil. Sci. Rep. 2021;11:9839. doi: 10.1038/s41598-021-88779-3. PubMed DOI PMC
Duke S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018;74:1027–1034. doi: 10.1002/ps.4652. PubMed DOI
Czech Standards Institute . Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminiscent bacteria Test)—Part 2: Method Using Liquid-Dried Bacteria (ISO 11348-2: 1998) Czech Standards Institute; Prague, Czech Republic: 2000. p. 20.
Finney D.J. Probit Analysis. J. Inst. Actuar. 1952;78:2.
Mesnage R., Bernay B., Seralini G.E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology. 2013;313:122–128. doi: 10.1016/j.tox.2012.09.006. PubMed DOI
European Parliament, Council of the European Union Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. Off. J. Eur. Union. 2008;L 353:139.
Amoros I., Alonso J.L., Romaguera S., Carrasco J.M. Assessment of toxicity of a glyphosate-based formulation using bacterial systems in lake water. Chemosphere. 2007;67:2221–2228. doi: 10.1016/j.chemosphere.2006.12.020. PubMed DOI
Bonnet J.L., Bonnemoy F., Dusser M., Bohatier J. Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ. Toxicol. 2007;22:78–91. doi: 10.1002/tox.20237. PubMed DOI
Hernando M.D., Vettori S., Bueno M.J.M., Fernandez-Alba A.R. Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture. Chemosphere. 2007;68:724–730. doi: 10.1016/j.chemosphere.2006.12.097. PubMed DOI
Peinado M.T., Mariscal A., Carnero-Varo M., Fernandez-Crehuet J. Correlation of two bioluminescence and one fluorogenic bioassay for the detection of toxic chemicals. Ecotoxicol. Environ. Saf. 2002;53:170–177. doi: 10.1006/eesa.2002.2177. PubMed DOI
Berberidou C., Kitsiou V., Karahanidou S., Lambropoulou D.A., Kouras A., Kosma C.I., Albanis T.A., Poulios I. Photocatalytic degradation of the herbicide clopyralid: Kinetics, degradation pathways andecotoxicity evaluation. J. Chem. Technol. Biotechnol. 2016;91:2510–2518. doi: 10.1002/jctb.4848. DOI
Jones D., Scarlett A.G., West C.E., Rowland S.J. Toxicity of Individual Naphthenic Acids to Vibrio fischeri. Environ. Sci. Technol. 2011;45:9776–9782. doi: 10.1021/es201948j. PubMed DOI
Rodrigues L.D., de Oliveira R., Abe F.R., Brito L.B., Moura D.S., Valadares M.C., Grisolia C.K., de Oliveira D.P., de Oliveira G.A.R. Ecotoxicological Assesment of Glyphosate-based Herbicides: Effects on Different Organisms. Environ. Toxicol. Chem. 2017;36:1755–1763. doi: 10.1002/etc.3580. PubMed DOI
Jawahar Ali A., Mohamed A.J., Kumar M.A., John B.A. Organophosphorus pesticides toxicity on brine shrimp artemia. J. CleanWAS. 2018;1:23–26. doi: 10.26480/jcleanwas.01.2018.23.26. DOI
Tauchnitz N., Kurzius F., Rupp H., Schmidt G., Hauser B., Schrodter M., Meissner R. Assessment of pesticide inputs into surface waters by agricultural and urban sources—A case study in the Querne/Weida catchment, central Germany. Environ. Pollut. 2020;267:13. doi: 10.1016/j.envpol.2020.115186. PubMed DOI
Huang X.J., Fong S., Deanovic L., Young T.A. Toxicity of herbicides in highway runoff. Environ. Toxicol. Chem. 2005;24:2336–2340. doi: 10.1897/04-174R.1. PubMed DOI
Ronco A.E., Marino D.J.G., Abelando M., Almada P., Apartin C.D. Water quality of the main tributaries of the Parana Basin: Glyphosate and AMPA in surface water and bottom sediments. Environ. Monit. Assess. 2016;188:13. doi: 10.1007/s10661-016-5467-0. PubMed DOI
Peruzzo P.J., Porta A.A., Ronco A.E. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ. Pollut. 2008;156:61–66. doi: 10.1016/j.envpol.2008.01.015. PubMed DOI
Glozier N.E., Struger J., Cessna A.J., Gledhill M., Rondeau M., Ernst W.R., Sekela M.A., Cagampan S.J., Sverko E., Murphy C., et al. Occurrence of glyphosate and acidic herbicides in select urban rivers and streams in Canada, 2007. Environ. Sci. Pollut. Res. Int. 2012;19:821–834. doi: 10.1007/s11356-011-0600-7. PubMed DOI
Geng Y., Jiang L., Zhang D., Liu B., Zhang J., Cheng H., Wang L., Peng Y., Wang Y., Zhao Y., et al. Glyphosate, aminomethylphosphonic acid, and glufosinate ammonium in agricultural groundwater and surface water in China from 2017 to 2018: Occurrence, main drivers, and environmental risk assessment. Sci. Total Environ. 2021;769:144396. doi: 10.1016/j.scitotenv.2020.144396. PubMed DOI
Le Du-Carrée J., Boukhari R., Cachot J., Cabon J., Louboutin L., Morin T., Danion M. Generational effects of a chronic exposure to a low environmentally relevant concentration of glyphosate on rainbow trout, Oncorhynchus mykiss. Sci. Total Environ. 2021;801:149462. doi: 10.1016/j.scitotenv.2021.149462. PubMed DOI
Gonçalves B.B., Nascimento N.F., Santos M.P., Bertolini R.M., Yasui G.S., Giaquinto P.C. Low concentrations of glyphosate-based herbicide cause complete loss of sperm motility of yellowtail tetra fish Astyanax lacustris. J. Fish Biol. 2018;92:1218–1224. doi: 10.1111/jfb.13571. PubMed DOI
Guilherme S., Santos M.A., Barroso C., Gaivão I., Pacheco M. Differential genotoxicity of Roundup(®) formulation and its constituents in blood cells of fish (Anguilla anguilla): Considerations on chemical interactions and DNA damaging mechanisms. Ecotoxicology. 2012;21:1381–1390. doi: 10.1007/s10646-012-0892-5. PubMed DOI
El-Shenawy N.S. Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. Environ. Toxicol. Pharmacol. 2009;28:379–385. doi: 10.1016/j.etap.2009.06.001. PubMed DOI
Owagboriaye F., Dedeke G., Ademolu K., Olujimi O., Aladesida A., Adeleke M. Comparative studies on endogenic stress hormones, antioxidant, biochemical and hematological status of metabolic disturbance in albino rat exposed to roundup herbicide and its active ingredient glyphosate. Environ. Sci. Pollut. Res. Int. 2019;26:14502–14512. doi: 10.1007/s11356-019-04759-1. PubMed DOI
Lopes A., Benvindo-Souza M., Carvalho W.F., Nunes H.F., de Lima P.N., Costa M.S., Benetti E.J., Guerra V., Saboia-Morais S.M.T., Santos C.E., et al. Evaluation of the genotoxic, mutagenic, and histopathological hepatic effects of polyoxyethylene amine (POEA) and glyphosate on Dendropsophus minutus tadpoles. Environ. Pollut. 2021;289:117911. doi: 10.1016/j.envpol.2021.117911. PubMed DOI
Tsui M.T.K., Chu L.M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere. 2003;52:1189–1197. doi: 10.1016/S0045-6535(03)00306-0. PubMed DOI
Motta E., Raymann K., Moran N. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA. 2018;115:201803880. doi: 10.1073/pnas.1803880115. PubMed DOI PMC
Herbert L.T., Vázquez D.E., Arenas A., Farina W.M. Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. J. Exp. Biol. 2014;217:3457–3464. doi: 10.1242/jeb.109520. PubMed DOI
Luo Q.H., Gao J., Guo Y., Liu C., Ma Y.Z., Zhou Z.Y., Dai P.L., Hou C.S., Wu Y.Y., Diao Q.Y. Effects of a commercially formulated glyphosate solutions at recommended concentrations on honeybee (Apis mellifera L.) behaviours. Sci. Rep. 2021;11:2115. doi: 10.1038/s41598-020-80445-4. PubMed DOI PMC
Attademo A.M., Lajmanovich R.C., Peltzer P.M., Boccioni A.P.C., Martinuzzi C., Simonielo F., Repetti M.R. Effects of the emulsifiable herbicide Dicamba on amphibian tadpoles: An underestimated toxicity risk? Environ. Sci. Pollut. Res. 2021;28:31962–31974. doi: 10.1007/s11356-021-13000-x. PubMed DOI
Ruiz de Arcaute C., Larramendy M.L., Soloneski S. Genotoxicity by long-term exposure to the auxinic herbicides 2,4-dichlorophenoxyacetic acid and dicamba on Cnesterodon decemmaculatus (Pisces: Poeciliidae) Environ. Pollut. 2018;243:670–678. doi: 10.1016/j.envpol.2018.09.040. PubMed DOI
González N.V., Soloneski S., Larramendy M.L. The chlorophenoxy herbicide dicamba and its commercial formulation banvel induce genotoxicity and cytotoxicity in Chinese hamster ovary (CHO) cells. Mutat. Res. 2007;634:60–68. doi: 10.1016/j.mrgentox.2007.06.001. PubMed DOI
Espandiari P., Thomas V.A., Glauert H.P., O’Brien M., Noonan D., Robertson L.W. The herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) is a peroxisome proliferator in rats. Fundam. Appl. Toxicol. 1995;26:85–90. doi: 10.1006/faat.1995.1077. PubMed DOI
Fairchild J.F., Allert A.L., Feltz K.P., Nelson K.J., Valle J.A. An ecological risk assessment of the acute and chronic effects of the herbicide clopyralid to rainbow trout (Oncorhynchus mykiss) Arch. Environ. Contam. Toxicol. 2009;57:725–731. doi: 10.1007/s00244-009-9381-0. PubMed DOI
Hayes W.C., Smith F.A., John J.A., Rao K.S. Teratologic evaluation of 3,6-Dichloropicolinic acid in rats and rabbits. Fundam. Appl. Toxicol. 1984;4:91–97. doi: 10.1016/0272-0590(84)90222-7. PubMed DOI
Fairchild J., Allert A., Sappington L., Nelson K., Valle J. Using Accelerated Life Testing Procedures to Compare the Relative Sensitivity of Rainbow Trout and the Federally-Listed Threatened Bull Trout to Three Commonly-Used Rangeland Herbicides (Picloram, 2,4-D, and Clopyralid) Environ. Toxicol. Chem./SETAC. 2008;27:623–630. doi: 10.1897/07-342.1. PubMed DOI
Stehr C.M., Linbo T.L., Baldwin D.H., Scholz N.L., Incardona J.P. Evaluating the effects of forestry herbicides on fish development using rapid phenotypic screens. N. Am. J. Fish. Manag. 2009;29:975–984. doi: 10.1577/M08-173.1. DOI
Sura S., Waiser M.J., Tumber V., Raina-Fulton R., Cessna A.J. Effects of a herbicide mixture on primary and bacterial productivity in four prairie wetlands with varying salinities: An enclosure approach. Sci. Total Environ. 2015;512–513:526–539. doi: 10.1016/j.scitotenv.2015.01.064. PubMed DOI
Lydy M., Belden J., Wheelock C., Hammock B., Denton D. Challenges in regulating pesticide mixtures. Ecol. Soc. 2004;9:1–15. doi: 10.5751/ES-00694-090601. DOI
European Chemical Agency Candidate List of Substances of very High Concern for Authorisation. [(accessed on 20 September 2021)]; Available online: https://echa.europa.eu/candidate-list-table.
European Food Safety Authority Peer review of the pesticide risk assessment of the potential endocrine disrupting properties of glyphosate. EFSA J. 2017;15:e04979. PubMed PMC
European Commission Status under Reg. (EC) No 1107/2009. [(accessed on 20 September 2021)]. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/?event=as.details&as_id=811.
European Food Safety Authority Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Glyphosate. [(accessed on 20 September 2021)]; Available online: https://www.efsa.europa.eu/en/efsajournal/pub/4302.