Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24404066
PubMed Central
PMC3785521
DOI
10.1063/1.4821168
PII: 007305BMF
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Here, we introduce a solution to low stability of a two-phase slug flow with a chemical reaction occurring at the phase interface in a microfluidic reactor where substantial merging of individual reacting slugs results in the loss of uniformity of the flow. We create a three-phase slug flow by introducing a third fluid phase into the originally two-phase liquid-liquid slug flow, which generates small two-phase liquid slugs separated by gas phase. Introduction of the third phase into our system efficiently prevents merging of slugs and provides beneficial reaction conditions, such as uniform flow pattern along the whole reaction capillary, interfacial area with good reproducibility, and intensive water-oil interface renewal. We tested the three-phase flow on an enzyme hydrolysis of soybean oil and compared the reaction conversion with those from unstable two-phase slug flows. We experimentally confirmed that the three-phase slug flow arrangement provides conversions and pressure drops comparable or even better with two-phase liquid-liquid arrangements.
Zobrazit více v PubMed
Burns J. R. and Ramshaw C., Lab Chip 1(1), 10–15 (2001).10.1039/b102818a PubMed DOI
Brand O., Fedder G. K., Hierold C., Korvink J. G., and Tabata O., Micro Process Engineering (Wiley-VCH, Weinheim, 2006).
Assmann N. and von Rohr P. R., Chem. Eng. Process. 50(8), 822–827 (2011)10.1016/j.cep.2011.05.009. DOI
Jovanovic J., Rebrov E. V., Nijhuis T. A., Kreutzer M. T., Hessel V., and Schouten J. C., Ind. Eng. Chem. Res. 51(2), 1020–1031 (2012)10.1021/ie200715m. DOI
Ahmed B., Barrow D., and Wirth T., Adv. Synth. Catal. 348(9), 1043–1048 (2006).10.1002/adsc.200505480 DOI
Jovanovic J., Rebrov E. V., Nijhuis T. A., Hessel V., and Schouten J. C., Ind. Eng. Chem. Res. 49(6), 2681–2687 (2010).10.1021/ie9017918 DOI
Martin K., Henkel T., Baier V., Grodrian A., Schon T., Roth M., Kohler J. M., and Metze J., Lab Chip 3(3), 202–207 (2003).10.1039/b301258c PubMed DOI
Reddy V. and Zahn J. D., J. Colloid Interface Sci. 286(1), 158–165 (2005).10.1016/j.jcis.2004.12.052 PubMed DOI
Hu S. W., Sheng Y. J., and Tsao H. K., Biomicrofluidics 6(2), 024130 (2012).10.1063/1.4729129 PubMed DOI PMC
Kurup G. K. and Basu A. S., Biomicrofluidics 6(2), 022008 (2012).10.1063/1.3700120 PubMed DOI PMC
Yashina A., Meldrum F., and deMello A., Biomicrofluidics 6(2), 022001 (2012).10.1063/1.3683162 PubMed DOI PMC
Kashid M. N., Renken A., and Kiwi-Minsker L., Chem. Eng. Sci. 66(17), 3876–3897 (2011)10.1016/j.ces.2011.05.015. DOI
Sobieszuk P., Aubin J., and Pohorecki R., Chem. Eng. Technol. 35(8), 1346–1358 (2012).10.1002/ceat.201100643 DOI
Dessimoz A. L., Cavin L., Renken A., and Kiwi-Minsker L., Chem. Eng. Sci. 63(16), 4035–4044 (2008)10.1016/j.ces.2008.05.005. DOI
Zheng B. and Ismagilov R. F., Angew. Chem. Int. Edit. 44(17), 2520–2523 (2005)10.1002/anie.200462857. PubMed DOI PMC
Khan S. A. and Duraiswamy S., Lab Chip 9(13), 1840–1842 (2009).10.1039/b904119b PubMed DOI
Rahman M. T., Fukuyama T., Kamata N., Sato M., and Ryu I., Chem. Commun. 2006, 2236–223810.1039/b600970k. PubMed DOI
Chen D. L. L., Li L., Reyes S., Adamson D. N., and Ismagilov R. F., Langmuir 23(4), 2255–2260 (2007).10.1021/la062152z PubMed DOI PMC
Duraiswamy S. and Khan S. A., Nano Lett. 10(9), 3757–3763 (2010).10.1021/nl102478q PubMed DOI
Jaeger K. E. and Eggert T., Curr. Opin. Biotechnol. 13(4), 390–397 (2002).10.1016/S0958-1669(02)00341-5 PubMed DOI
Cech J., Schrott W., Slouka Z., Pribyl M., Broz M., Kuncova G., and Snita D., Biochem. Eng. J. 67, 194–202 (2012).10.1016/j.bej.2012.06.015 DOI
Svoboda M., Slouka Z., Schrott W., Cervenka P., Pribyl M., and Snita D., Microelectron. Eng. 87(5–8), 1590–1593 (2010).10.1016/j.mee.2009.11.010 DOI
Guan G., Kusakabe K., Moriyama K., and Sakurai N., Ind. Eng. Chem. Res. 48(3), 1357–1363 (2009).10.1021/ie800852x DOI
Molinari R., Santoro M. E., and Drioli E., Ind. Eng. Chem. Res. 33(11), 2591–2599 (1994).10.1021/ie00035a010 DOI
Deen W. M., Analysis of Transport Phenomena (Oxford University Press, New York, 1998).
Jovanovic J., Zhou W. Y., Rebrov E. V., Nijhuis T. A., Hessel V., and Schouten J. C., Chem. Eng. Sci. 66(1), 42–54 (2011)10.1016/j.ces.2010.09.040. DOI
Kashid M. N., Platte F., Agar D. W., and Turek S., J. Comput. Appl. Math. 203(2), 487–497 (2007).10.1016/j.cam.2006.04.010 DOI
Jurado E., Carnacho F., Luzon G., Fernandez-Serrano M., and Garcia-Roman M., Biochem. Eng. J. 40(3), 473–484 (2008).10.1016/j.bej.2008.02.002 DOI
Kashid M. N., Agar D. W., and Turek S., Chem. Eng. Sci. 62(18–20), 5102–5109 (2007)10.1016/j.ces.2007.01.068. DOI
Kashid M. N., Gupta A., Renken A., and Kiwi-Minsker L., Chem. Eng. J. 158, 233–240 (2010).10.1016/j.cej.2010.01.020 DOI
Kashid M. N., Gerlach I., Goetz S., Franzke J., Acker J. F., Platte F., Agar D. W., and Turek S., Ind. Eng. Chem. Res. 44(14), 5003–5010 (2005).10.1021/ie0490536 DOI
Salic A., Tusek A., and Zelic B., J. Appl. Biomed. 10(3), 137–153 (2012)10.2478/v10136-012-0011-1. DOI