Analysis of visual appearance of retinal nerve fibers in high resolution fundus images: a study on normal subjects
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24454526
PubMed Central
PMC3888693
DOI
10.1155/2013/134543
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- axony patologie MeSH
- barva MeSH
- entropie MeSH
- fotografování MeSH
- fundus oculi * MeSH
- lidé MeSH
- nervová vlákna MeSH
- optická koherentní tomografie MeSH
- počítačové zpracování obrazu MeSH
- povrchové vlastnosti MeSH
- referenční hodnoty MeSH
- regresní analýza MeSH
- reprodukovatelnost výsledků MeSH
- retinální gangliové buňky patologie MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The retinal ganglion axons are an important part of the visual system, which can be directly observed by fundus camera. The layer they form together inside the retina is the retinal nerve fiber layer (RNFL). This paper describes results of a texture RNFL analysis in color fundus photographs and compares these results with quantitative measurement of RNFL thickness obtained from optical coherence tomography on normal subjects. It is shown that local mean value, standard deviation, and Shannon entropy extracted from the green and blue channel of fundus images are correlated with corresponding RNFL thickness. The linear correlation coefficients achieved values 0.694, 0.547, and 0.512 for respective features measured on 439 retinal positions in the peripapillary area from 23 eyes of 15 different normal subjects.
Zobrazit více v PubMed
Ciulla TA, Regillo CD, Harris A. Retina and Optic Nerve Imaging. Philadelphia, Pa, USA: Lippincott Williams & Wilkins; 2003.
Kulwant S. Red-free photography of the retina. The Journal of Audiovisual Media in Medicine. 1982;5(4):142–144. PubMed
Airaksinen PJ, Drance SM, Douglas GR, Mawson DK, Nieminen H. Diffuse and localized nerve fiber loss in glaucoma. American Journal of Ophthalmology. 1984;98(5):566–571. PubMed
Jonas JB, Dichtl A. Evaluation of the retinal nerve fiber layer. Survey of Ophthalmology. 1996;40(5):369–378. PubMed
Yogesan K, Eikelboom RH, Barry CJ. Texture analysis of retinal images to determine nerve bre loss. Proceedings of the 14th International Conference on Pattern Recognition; 1998; pp. 1665–1667.
Tuulonen A, Alanko H, Hyytinen P, Veijola J, Seppänen T, Airaksinen PJ. Digital imaging and microtexture analysis of the nerve fiber layer. Journal of Glaucoma. 2000;9(1):5–9. PubMed
Kolář R, Jan J. Detection of glaucomatous eye via color fundus images using fractal dimensions. Radioengineering. 2008;17(3):109–114.
Odstrcilik J, Kolar R, Harabis V, Gazarek J, Jan J. Retinal nerve fiber layer analysis via markov random fields texture modelling. Proceedings of the 18th European Signal Processing Conference; 2010; pp. 1650–1654.
Jan J, Odstrcilik J, Gazarek J, Kolar R. Retinal image analysis aimed at blood vessel tree segmentation and early detection of neural-layer deterioration. Computerized Medical Imaging and Graphics. 2012;36(6):431–441. PubMed
Muramatsu C, Hayashi Y, Sawada A, et al. Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma. Journal of Biomedical Optics. 2010;15(1)016021 PubMed
Hoyt WF, Frisen L, Newman NM. Fundoscope of nerve fiber layer defects in glaucoma. Investigative Ophthalmology. 1973;12(11):814–829. PubMed
Lundstrom M, Eklundh JO. Computer densitometry of retinal nerve fibre atrophy. A pilot study. Acta Ophthalmologica. 1980;58(4):639–644. PubMed
Peli E. Computer measurements of retina nerve fibre layer striations. Applied Optics. 1988;28(6):1128–1134. PubMed
Oliva AM, Richards D, Saxon W. Search for color-dependent nerve-fiber-layer thinning in glaucoma: a pilot study using digital imaging techniques. Proceedings of the Investigative Ophthalmology and Visual Science Meeting; 2007; E-abstract no. 3309.
Prageeth PG, David J, Sukesh Kumar A. Early detection of retinal nerve fiber layer defects using fundus image processing. Proceedings of the IEEE Recent Advances in Intelligent Computational Systems (RAICS '11); September 2011; IEEE; pp. 930–936.
Acharya UR, Dua S, Du X, Sree S V, Chua CK. Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Transactions on Information Technology in Biomedicine. 2011;15(3):449–455. PubMed
Quigley HA. Examination of the retinal nerve fiber layer in the recognition of early glaucoma damage. Transactions of the American Ophthalmological Society. 1986;84:920–966. PubMed PMC
Sihota R, Sony P, Gupta V, Dada T, Singh R. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Investigative Ophthalmology and Visual Science. 2006;47(5):2006–2010. PubMed
Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R, Jr., Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. American Journal of Ophthalmology. 2005;139(1):44–55. PubMed
Jan J, Odstrcilik J, Gazarek J, Kolar R. Retinal image analysis aimed at support of early neural-layer deterioration diagnosis. Proceedings of the 9th International Conference on Information Technology and Applications in Biomedicine (ITAB '09); November 2009; pp. 101–103.
Kolar R, Vacha P. Texture analysis of the retinal nerve fiber layer in fundus images via Markov random fields. In: Dössel O, Schlegel WC, editors. World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany. 25/11. Berlin, Germany: Springer; 2009. pp. 247–250. (IFMBE Proceedings).
Novotny A, Odstrcilik J, Kolar R, Jan J. Texture analysis of nerve fibre layer in retinal images via local binary patterns and gaussian markov random fields. Proceedings of the 20th Biennial International EURASIP Conference (BIOSIGNAL '10); 2010; pp. 308–315.
Hastings NAJ, Peacock JB. Statistical Distributions: A Handbook for Students and Practitioners. New York, NY, USA: John Wiley & Sons; 1975.
Coffin D. DCRAW, 2012, http://www.cybercom.net/~dcoffin/dcraw/
Kolar R, Odstrcilik J, Jan J, Harabis V. Illumination correction and contrast equalization in colour fundus images. Proceedings of the 19th European Signal Processing Conference (EUSIPCO '11); 2011; pp. 299–302.
Niemann H, Chrastek R, Lausen B, et al. Towards automated diagnostic evaluation of retina images. Pattern Recognition and Image Analysis. 2006;16(4):671–676.
Pizer SM, Amburn EP, Austin JD, et al. Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing. 1987;39(3):355–368.
Naumann G. Pathologie des Auges. Berlin, Germany: Springer; 1997. http://www.amazon.com/Pathologie-Auges-German-G-O-H-Naumann/dp/3540616829.
Mayer M, Hornegger J, Mardin CY, Tornow R-P. Retinal nerve fiber layer segmentation on fd-oct scans of normal subjects and glaucoma patients. Biomedical Optics Express. 2010;1(5):1358–1383. PubMed PMC
Thévenaz P, Blu T, Unser M. Interpolation revisited. IEEE Transactions on Medical Imaging. 2000;19(7):739–758. PubMed
Kolar R, Tasevsky P. Biomedical Image Registration. Vol. 6204. Berlin, Germany: Springer; 2010. Registration of 3D retinal optical coherence tomography data and 2D fundus images; pp. 72–82. (Lecture Notes in Computer Science).
Kolar R, Harabis V, Odstrcilik J. Hybrid retinal image registration using phase correlation. The Imaging Science Journal. 2013;61(4):369–384.
Can A, Stewart CV, Roysam B, Tanenbaum HL. A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002;24(3):347–364.
Kolar R, Harabis V. Automatic rigid registration and analysis of colour fundus image in patients with diabetic retinopathy. In: Dössel O, Schlegel WC, editors. World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany. 25/11. Berlin, Germany: Springer; 2009. pp. 251–254. (IFMBE Proceedings).
Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes: The Art of Scientific Computing. 2nd edition. New York, NY, USA: Cambridge University Press; 1992.
Bock R, Meier J, Nyúl LG, Hornegger J, Michelson G. Glaucoma risk index: automated glaucoma detection from color fundus images. Medical Image Analysis. 2010;14(3):471–481. PubMed