β-Arrestin interacts with the beta/gamma subunits of trimeric G-proteins and dishevelled in the Wnt/Ca(2+) pathway in xenopus gastrulation
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24489854
PubMed Central
PMC3906129
DOI
10.1371/journal.pone.0087132
PII: PONE-D-13-32156
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- aktivace enzymů MeSH
- arrestiny metabolismus MeSH
- beta arrestiny MeSH
- embryo nesavčí metabolismus MeSH
- fosfoproteiny metabolismus MeSH
- gastrulace * MeSH
- heterotrimerní G-proteiny metabolismus MeSH
- podjednotky proteinů metabolismus MeSH
- protein dishevelled MeSH
- proteinkinasa C-alfa metabolismus MeSH
- signální dráha Wnt MeSH
- transport proteinů MeSH
- vápníková signalizace MeSH
- vazba proteinů MeSH
- Xenopus laevis embryologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- arrestiny MeSH
- beta arrestiny MeSH
- fosfoproteiny MeSH
- heterotrimerní G-proteiny MeSH
- podjednotky proteinů MeSH
- protein dishevelled MeSH
- proteinkinasa C-alfa MeSH
β-Catenin independent, non-canonical Wnt signaling pathways play a major role in the regulation of morphogenetic movements in vertebrates. The term non-canonical Wnt signaling comprises multiple, intracellularly divergent, Wnt-activated and β-Catenin independent signaling cascades including the Wnt/Planar Cell Polarity and the Wnt/Ca(2+) cascades. Wnt/Planar Cell Polarity and Wnt/Ca(2+) pathways share common effector proteins, including the Wnt ligand, Frizzled receptors and Dishevelled, with each other and with additional branches of Wnt signaling. Along with the aforementioned proteins, β-Arrestin has been identified as an essential effector protein in the Wnt/β-Catenin and the Wnt/Planar Cell Polarity pathway. Our results demonstrate that β-Arrestin is required in the Wnt/Ca(2+) signaling cascade upstream of Protein Kinase C (PKC) and Ca(2+)/Calmodulin-dependent Protein Kinase II (CamKII). We have further characterized the role of β-Arrestin in this branch of non-canonical Wnt signaling by knock-down and rescue experiments in Xenopus embryo explants and analyzed protein-protein interactions in 293T cells. Functional interaction of β-Arrestin, the β subunit of trimeric G-proteins and Dishevelled is required to induce PKC activation and membrane translocation. In Xenopus gastrulation, β-Arrestin function in Wnt/Ca(2+) signaling is essential for convergent extension movements. We further show that β-Arrestin physically interacts with the β subunit of trimeric G-proteins and Dishevelled, and that the interaction between β-Arrestin and Dishevelled is promoted by the beta/gamma subunits of trimeric G-proteins, indicating the formation of a multiprotein signaling complex.
Institute of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
Zobrazit více v PubMed
Klein TJ, Mlodzik M (2005) Planar cell polarization: an emerging model points in the right direction. Annu Rev Cell Dev Biol 21: 155–176 10.1146/annurev.cellbio.21.012704.132806 PubMed DOI
Rao TP, Kühl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106: 1798–1806 10.1161/CIRCRESAHA.110.219840 PubMed DOI
Winklbauer R, Medina A, Swain RK, Steinbeisser H (2001) Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413: 856–860 10.1038/35101621 PubMed DOI
Djiane A, Riou J, Umbhauer M, Boucaut J, Shi D (2000) Role of frizzled 7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 127: 3091–3100. PubMed
Kim G-H, Her J-H, Han J-K (2008) Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J Cell Biol 182: 1073–1082 10.1083/jcb.200710188 PubMed DOI PMC
Medina A, Swain RK, Kuerner K-M, Steinbeisser H (2004) Xenopus paraxial protocadherin has signaling functions and is involved in tissue separation. EMBO J 23: 3249–3258 10.1038/sj.emboj.7600329 PubMed DOI PMC
Bryja V, Schambony A, Cajánek L, Dominguez I, Arenas E, et al. (2008) Beta-arrestin and casein kinase 1/2 define distinct branches of non-canonical WNT signalling pathways. EMBO Rep 9: 1244–1250 10.1038/embor.2008.193 PubMed DOI PMC
Pandur P, Läsche M, Eisenberg LM, Kühl M (2002) Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418: 636–641 10.1038/nature00921 PubMed DOI
Gessert S, Kühl M (2010) The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res 107: 186–199 10.1161/CIRCRESAHA.110.221531 PubMed DOI
Kestler HA, Kühl M (2008) From individual Wnt pathways towards a Wnt signalling network. Philos Trans R Soc Lond, B, Biol Sci 363: 1333–1347 10.1098/rstb.2007.2251 PubMed DOI PMC
Kovacs JJ, Hara MR, Davenport CL, Kim J, Lefkowitz RJ (2009) Arrestin development: emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell 17: 443–458 10.1016/j.devcel.2009.09.011 PubMed DOI PMC
Schulte G, Schambony A, Bryja V (2010) beta-Arrestins - scaffolds and signalling elements essential for WNT/Frizzled signalling pathways? Br J Pharmacol 159: 1051–1058 10.1111/j.1476-5381.2009.00466.x PubMed DOI PMC
Bryja V, Gradl D, Schambony A, Arenas E, Schulte G (2007) Beta-arrestin is a necessary component of Wnt/beta-catenin signaling in vitro and in vivo. Proc Natl Acad Sci USA 104: 6690–6695 10.1073/pnas.0611356104 PubMed DOI PMC
Kim G-H, Han J-K (2007) Essential role for â-arrestin 2 in the regulation of Xenopus convergent extension movements. EMBO J 26: 2513–2526 10.1038/sj.emboj.7601688 PubMed DOI PMC
Sheldahl LC, Slusarski DC, Pandur P, Miller JR, Kühl M, et al. (2003) Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell Biol 161: 769–777 10.1083/jcb.200211094 PubMed DOI PMC
Sheldahl LC, Park M, Malbon CC, Moon RT (1999) Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol 9: 695–698. PubMed
Nieuwkoop PD, Faber J (1975) External and internal stage criteria in the development of Xenopus laevis. Normal Tables of Xenopus laevis: 162–188.
Unterseher F, Hefele JA, Giehl K, De Robertis EM, Wedlich D, et al. (2004) Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK. EMBO J 23: 3259–3269 10.1038/sj.emboj.7600332 PubMed DOI PMC
Schambony A, Wedlich D (2007) Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev Cell 12: 779–792 10.1016/j.devcel.2007.02.016 PubMed DOI
Gray RS, Bayly RD, Green SA, Agarwala S, Lowe CJ, et al. (2009) Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution. Dev Dyn 238: 2044–2057 10.1002/dvdy.22028 PubMed DOI PMC
Tauriello DVF, Jordens I, Kirchner K, Slootstra JW, Kruitwagen T, et al. (2012) Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proc Natl Acad Sci USA 109: E812–E820 10.1073/pnas.1114802109 PubMed DOI PMC
Koch WJ, Inglese J, Stone WC, Lefkowitz RJ (1993) The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. J Biol Chem 268: 8256–8260. PubMed
Tada M, Concha ML, Heisenberg CP (2002) Non-canonical Wnt signalling and regulation of gastrulation movements. Semin Cell Dev Biol 13: 251–260. PubMed
Keller R (2005) Cell migration during gastrulation. Curr Opin Cell Biol 17: 533–541 10.1016/j.ceb.2005.08.006 PubMed DOI
Shih J, Keller R (1992) Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116: 901–914. PubMed
Kühl M, Geis K, Sheldahl LC, Pukrop T, Moon RT, et al. (2001) Antagonistic regulation of convergent extension movements in Xenopus by Wnt/beta-catenin and Wnt/Ca2+ signaling. Mech Dev 106: 61–76. PubMed
Penzo-Mendèz A, Umbhauer M, Djiane A, Boucaut J-C, Riou J-F (2003) Activation of Gbetagamma signaling downstream of Wnt-11/Xfz7 regulates Cdc42 activity during Xenopus gastrulation. Dev Biol 257: 302–314. PubMed
Koval A, Katanaev VL (2011) Wnt3a stimulation elicits G-protein-coupled receptor properties of mammalian Frizzled proteins. Biochem J 433: 435–440 10.1042/BJ20101878 PubMed DOI
Nichols AS, Floyd DH, Bruinsma SP, Narzinski K, Baranski TJ (2013) Frizzled receptors signal through G proteins. Cell Signal 25: 1468–1475 10.1016/j.cellsig.2013.03.009 PubMed DOI PMC
Chen W, Berge ten D, Brown J, Ahn S, Hu LA, et al. (2003) Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301: 1391–1394 10.1126/science.1082808 PubMed DOI
Yang M, He RL, Benovic JL, Ye RD (2009) beta-Arrestin1 interacts with the G-protein subunits beta1gamma2 and promotes beta1gamma2-dependent Akt signalling for NF-kappaB activation. Biochem J 417: 287–296 10.1042/BJ20081561 PubMed DOI PMC
Angers S, Thorpe CJ, Biechele TL, Goldenberg SJ, Zheng N, et al. (2006) The KLHL12–Cullin-3 ubiquitin ligase negatively regulates the Wnt–β-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 8: 348–357 10.1038/ncb1381 PubMed DOI
Kim G-H, Park EC, Lee H, Na H-J, Choi S-C, et al. (2013) â-Arrestin 1 mediates non-canonical Wnt pathway to regulate convergent extension movements. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2013.04.088. PubMed DOI
Habas R, Dawid IB, He X (2003) Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev 17: 295–309 10.1101/gad.1022203 PubMed DOI PMC
Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107: 843–854. PubMed
Katanaev VL, Ponzielli R, Sémériva M, Tomlinson A (2005) Trimeric G protein-dependent frizzled signaling in Drosophila. Cell 120: 111–122 10.1016/j.cell.2004.11.014 PubMed DOI