Anaerobic metabolism associated with traumatic hemorrhagic shock monitored by microdialysis of muscle tissue is dependent on the levels of hemoglobin and central venous oxygen saturation: a prospective, observational study

. 2014 Feb 05 ; 22 () : 11. [epub] 20140205

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24499479

BACKGROUND: Traumatic hemorrhagic shock resulting in tissue hypoxia is a significant cause of morbidity and mortality in polytraumatized patients. Early identification of tissue hypoxia is possible with microdialysis. The aim of this study was to determine the correlation between a marker of tissue hypoxia (L/P; lactate to pyruvate ratio) and selected parameters of systemic oxygen delivery (Hb; hemoglobin) and oxygen extraction (ScvO2; central venous oxygen saturation). We also investigated the severity of tissue hypoxia over the course of care. METHODS: Adult patients with traumatic hemorrhagic shock were enrolled in this prospective, observational study. Microdialysis of the peripheral muscle tissue was performed. Demographic data and timeline of care were collected. Tissue lactate, pyruvate, glycerol, glucose levels, hemoglobin, serum lactate and oxygen saturation of the central venous blood (ScvO2) levels were also measured. RESULTS: The L/P ratio trend may react to changes in systemic hemoglobin levels with a delay of 7 to 10 hours, particularly when systemic hemoglobin levels are increased by transfusion. Decrease in tissue L/P ratio may react to increase in ScvO2 with a delay of up to 10 hours, and such a decrease may signify elimination of tissue hypoxia after transfusion. We also observed changes in the L/P trend in the 13 hours preceding a change in the hemoglobin level. Fluid administration, which is routinely used as a first-line treatment of hypovolemic shock, can cause hemodilution and decreased hemoglobin. When ScvO2 decreases, increase in L/P ratio may precede the ScvO2 trend by 10 or 11 hours. An increase in the L/P ratio is an early warning sign of insufficient tissue oxygenation and should lead to intensive observation of hemoglobin levels, ScvO2 and other hemodynamic parameters. Patients who were treated more rapidly had lower maximal L/P values and a lower degree of tissue ischemia. CONCLUSION: The L/P ratio is useful to identify tissue ischemia and can estimate the effectiveness of fluid resuscitation. An increase in the L/P ratio is an early warning sign of inadequate tissue oxygenation and should lead to more detailed hemodynamic and laboratory monitoring. This information cannot usually be obtained from global markers.

Zobrazit více v PubMed

Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med. 1988;16(11):1117–1120. doi: 10.1097/00003246-198811000-00007. PubMed DOI

Suistomaa M, Uusaro A, Parviainen I. et al.Resolution and outcome of acute circulatory failure does not correlate with hemodynamics. Crit Care. 2003;7:R52–R58. doi: 10.1186/cc2332. PubMed DOI PMC

Meregalli A, Oliveira RP, Friedman G. et al.Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care. 2004;8:R60–R65. doi: 10.1186/cc2423. PubMed DOI PMC

Barbee RW, Reynolds PS, Ward KR. et al.Assessing shock resuscitation strategies by oxygen debt repayment. Shock. 2010;33(2):113–122. doi: 10.1097/SHK.0b013e3181b8569d. PubMed DOI

Spahn DR, Bouillon B, Cerny V. et al.Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76. doi: 10.1186/cc12685. PubMed DOI PMC

Sakr Y, Dubois MJ, De Backer D. et al.Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32(9):1825–1831. doi: 10.1097/01.CCM.0000138558.16257.3F. PubMed DOI

Shere-Wolfe RF, Galvagno SM Jr, Grissom TE. Critical care considerations in the management of the trauma patient following initial resuscitation. Scand J Trauma Resusc Emerg Med. 2012;20:68. doi: 10.1186/1757-7241-20-68. PubMed DOI PMC

Bursa F, Olos T, Pleva L. et al.Metabolism monitoring with microdialysis in the intensive care. Cas Lek Cesk. 2011;150(11):605–609. PubMed

Waelgaard L, Thorgersen EB, Line PD. et al.Microdialysis monitoring of liver grafts by metabolic parameters, cytokine production, and complement activation. Transplantation. 2008;86(8):1096–1103. doi: 10.1097/TP.0b013e31818775ca. PubMed DOI

Cibicek N, Zivna H, Vrublova E. et al.Gastric submucosal microdialysis in the detection of rat stomach ischemia–a comparison of the 3H2O efflux technique with metabolic monitoring. Physiol Meas. 2010;31(10):1355–1368. doi: 10.1088/0967-3334/31/10/005. PubMed DOI

Rostami E, Bellander BM. Monitoring of glucose in brain, adipose tissue, and peripheral blood in patients with traumatic brain injury: a microdialysis study. J Diabetes Sci Technol. 2011;5(3):596–604. doi: 10.1177/193229681100500314. PubMed DOI PMC

Kopterides P, Theodorakopoulou M, Ilias I. et al.Interrelationship between blood and tissue lactate in a general intensive care unit: a subcutaneous adipose tissue microdialysis study on 162 critically ill patients. J Crit Care. 2012;27(6):742.e9–742.e18. PubMed

Ohashi H, Kawasaki N, Fujitani S. et al.Utility of microdialysis to detect the lactate/pyruvate ratio in subcutaneous tissue for the reliable monitoring of haemorrhagic shock. J Smooth Muscle Res. 2009;45(6):269–278. doi: 10.1540/jsmr.45.269. PubMed DOI

Larentzakis A, Toutouzas KG, Papalois A. et al.Porcine model of haemorrhagic shock with microdialysis monitoring. J Surg Res. 2013;179(1):e177–e182. doi: 10.1016/j.jss.2012.01.040. PubMed DOI

Waelgaard L, Dahl BM, Kvarstein G. et al.Tissue gas tension and tissue metabolites for detection of organ hypoperfusion and ischemia. Acta Anaesthesiol Scand. 2012;56(2):200–209. doi: 10.1111/j.1399-6576.2011.02572.x. PubMed DOI

Suistomaa M, Ruokonen E, Kari A, Takala J. Time-pattern of lactate and lactate to pyruvate ratio in the first 24 hours of intensive care emergency admissions. Shock. 2000;14(1):8–12. doi: 10.1097/00024382-200014010-00002. PubMed DOI

Dimopoulou, Nikitas N, Orfanos SE. et al.Kinetics of adipose tissue microdialysis-derived metabolites in critically ill septic patients:associations with sepsis severity and clinical outcome. Shock. 2011;35(4):342–348. PubMed

Timofeev I, Czosnyka M, Carpenter KL. et al.Interaction between brain chemistry and physiology after traumatic brain injury: impact of autoregulation and microdialysis catheter location. J Neurotrauma. 2011;28(6):849–860. doi: 10.1089/neu.2010.1656. PubMed DOI PMC

Trzeciak S, McCoy JV, Phillip DR. et al.Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34(12):2210–2217. doi: 10.1007/s00134-008-1193-6. PubMed DOI PMC

Dubin A, Pozo MO, Ferrara G. Systemic and microcirculatory responses to progressive haemorrhage. Intensive Care Med. 2009;35(3):556–564. doi: 10.1007/s00134-008-1385-0. PubMed DOI

Kopterides P, Theodorakopoulou M, Nikitas N. et al.Red blood cell transfusion affects microdialysis-assessed interstitial lactate/pyruvate ratio in critically ill patients with late sepsis. Intensive Care Med. 2012;38(11):1843–1850. doi: 10.1007/s00134-012-2635-8. PubMed DOI

Benninger E, Laschke MW, Cardell M. Early detection of subclinical organ dysfunction by microdialysis of the rectus abdominis muscle in porcine model of critical intraabdominal hypertension. Shock. 2012;38(4):420–428. doi: 10.1097/SHK.0b013e31825ef7e7. PubMed DOI

Liu X, Kruger PS, Roberts MS. How to measure pharmacokinetics in critically ill patients? Curr Pharm Biotechnol. 2011;12(12):2037–2043. doi: 10.2174/138920111798808239. PubMed DOI

Douglas A, Altukroni M, Udy AA. et al.The pharmacokinetics of cefazolin in patients undergoing elective & semi-elective abdominal aortic aneurysm open repair surgery. BMC Anesthesiol. 2011;11:5. doi: 10.1186/1471-2253-11-5. PubMed DOI PMC

Karlander SF, Lars E. et al.Continous assessment of concentrations of cytokines in experimental injuries of the extremity. Int J Clin Exp Med. 2009;2(4):354. PubMed PMC

Tyvold SS, Solligård E, Gunnes S. et al.Bronchial microdialysis of cytokines in the epithelial lining fluid in experimental intestinal ischemia and reperfusion before onset of manifest lung injury. Shock. 2010;34(5):517–524. doi: 10.1097/SHK.0b013e3181dfc430. PubMed DOI

Roberts JA, Roberts MS, Semark A. et al.Antibiotic dosing in the ‘at risk’ critically ill patient: Linking pathophysiology with pharmacokinetics/pharmacodynamics in sepsis and trauma patients. BMC Anesthesiol. 2011;11:3. doi: 10.1186/1471-2253-11-3. PubMed DOI PMC

Jansson K, Redler B, Truedsson L. et al.Postoperative on-line monitoring with intraperitoneal microdialysis is a sensitive clinical method for measuring increased anaerobic metabolism that correlates to the cytokine response. Scand J Gastroenterol. 2004;39(5):434–439. PubMed

Haugaa H, Almaas R, Thorgersen EB. et al.Clinical experience with microdialysis catheters in pediatric liver transplants. Liver Transpl. 2013;19(3):305–314. doi: 10.1002/lt.23578. PubMed DOI

Widegren U, Hickner RC, Jorfeldt L. et al.Muscle blood flow response to mental stress and adrenaline infusion in man: microdialysis ethanol technique compared to (133)Xe clearance and venous occlusion plethysmography. Clin Physiol Funct Imaging. 2010;30(2):152–161. doi: 10.1111/j.1475-097X.2009.00919.x. PubMed DOI

Farnebo S, Zettersten EK, Samuelsson A. et al.Assessment of blood flow changes in human skin by microdialysis urea clearance. Microcirculation. 2011;18(3):198–204. doi: 10.1111/j.1549-8719.2010.00077.x. PubMed DOI

Samuelsson A, Farnebo S, Magnusson B. et al.Implications for burn shock resuscitation of a new in vivo human vascular microdosing technique (microdialysis) for dermal administration of noradrenaline. Burns. 2012;38(7):975–983. doi: 10.1016/j.burns.2012.05.012. PubMed DOI

Farnebo S, Samuelsson A, Henriksson J. et al.Urea clearance: a new method to register local changes in blood flow in rat skeletal muscle based on microdialysis. Clin Physiol Funct Imaging. 2010;30(1):57–63. doi: 10.1111/j.1475-097X.2009.00904.x. PubMed DOI

Shoemaker WC, Peitzman AB, Bellamy R. et al.Resuscitation from severe hemorrhage. Crit Care Med. 1996;24(2 Suppl):S12–S23. PubMed

Larach DB, Kofke WA, Le Roux P. Potential non-hypoxic/ischemic causes of increased cerebral interstitial fluid lactate/pyruvate ratio: a review of available literature. Neurocrit Care. 2011;15(3):609–622. doi: 10.1007/s12028-011-9517-8. PubMed DOI

Nikitas N, Kopterides P, Ilias I. et al.Elevated adipose tissue lactate to pyruvate (L/P) ratio predicts poor outcome in critically ill patients with septic shock: a microdialysis study. Minerva Anestesiol. 2013;15 Epub ahead of print. PubMed

Messerer M, Daniel RT, Oddo M. Neuromonitoring after major neurosurgical procedures. Minerva Anestesiol. 2012;78(7):810–822. PubMed

Rixen D, Siegel JH. Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Crit Care. 2005;9(5):441–453. doi: 10.1186/cc3526. PubMed DOI PMC

Vallet B, Robin E, Lebuffe G. Venous oxygen saturation as a physiologic transfusion trigger. Crit Care. 2010;14(2):213. doi: 10.1186/cc8854. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...