Tissue ischemia microdialysis assessments following severe traumatic haemorrhagic shock: lactate/pyruvate ratio as a new resuscitation end point?
Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem
PubMed
25580084
PubMed Central
PMC4289551
DOI
10.1186/1471-2253-14-118
PII: 327
Knihovny.cz E-zdroje
- Klíčová slova
- Cardiac output, Haemoglobin, Lactate, Microdialysis, Pyruvate, Shock, Transfusion, Trauma,
- MeSH
- dospělí MeSH
- hemoglobiny metabolismus MeSH
- hemoragický šok patofyziologie terapie MeSH
- kyselina mléčná metabolismus MeSH
- kyselina pyrohroznová metabolismus MeSH
- kyslík metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrodialýza metody MeSH
- minutový srdeční výdej fyziologie MeSH
- mladý dospělý MeSH
- prospektivní studie MeSH
- resuscitace metody MeSH
- stupeň závažnosti nemoci MeSH
- traumatický šok patofyziologie terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hemoglobiny MeSH
- kyselina mléčná MeSH
- kyselina pyrohroznová MeSH
- kyslík MeSH
BACKGROUND: Intensive care of severe trauma patients focuses on the treatment of haemorrhagic shock. Tissues should be perfused sufficiently with blood and with sufficient oxygen content to ensure adequate tissue oxygen delivery. Tissue metabolism can be monitored by microdialysis, and the lactate/pyruvate ratio (LPR) may be used as a tissue ischemia marker. The aim of this study was to determine the adequate cardiac output and haemoglobin levels that avoid tissue ischemia. METHODS: Adult patients with serious traumatic haemorrhagic shock were enrolled in this prospective observational study. The primary observed parameters included haemoglobin, cardiac output, central venous saturation, arterial lactate and the tissue lactate/pyruvate ratio. RESULTS: Forty-eight patients were analysed. The average age of the patients was 39.8 ± 16.7, and the average ISS was 43.4 ± 12.2. Hb < 70 g/l was associated with pathologic arterial lactate, ScvO2 and LPR. Tissue ischemia (i.e., LPR over 25) developed when CI ≤ 3.2 l/min/m(2) and Hb between 70 and 90 g/l were observed. Severe tissue ischemia events were recorded when the Hb dropped below 70 g/l and CI was 3.2-4.8 l/min/m(2). CI ≥ 4.8 l/min/m(2) was not found to be connected with tissue ischemia, even when Hb ≤ 70 g/l. CONCLUSION: LPR could be a useful marker to manage traumatic haemorrhagic shock therapies. In initial traumatic haemorrhagic shock treatments, it may be better to maintain CI ≥ 3.2 l/min/m(2) and Hb ≥ 70 g/l to avoid tissue ischemia. LPR could also be a useful transfusion trigger when it may demonstrate ischemia onset due to low local DO2 and early reveal low/no tissue perfusion.
Zobrazit více v PubMed
Schoeneberg C, Schilling M, Keitel J, Kauther MD, Burggraf M, Hussmann B, Lendemans S. Zentralbl Chir. 2014. TraumaNetwork, Trauma Registry of the DGU®, Whitebook, S3 Guideline on Treatment of Polytrauma/Severe Injuries: An Approach for Validation by a Retrospective Analysis of 2304 Patients (2002-2011) of a Level 1 Trauma Centre. PubMed
Rush BF. Irreversibility in post-transfusion phase of hemorrhagic shock. Adv Exp Med Bio. 1971;23:215–221. doi: 10.1007/978-1-4615-9014-9_21. PubMed DOI
Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med. 1988;16(11):1117–1120. doi: 10.1097/00003246-198811000-00007. PubMed DOI
Barbee RW, Reynolds PS, Ward KR. Assessing shock resuscitation strategies by oxygen debt repayment. Shock. 2010;33(2):113–122. doi: 10.1097/SHK.0b013e3181b8569d. PubMed DOI
Bonanno FG. Physiopathology of shock. J Emerg Trauma Shock. 2011;4(2):222–232. doi: 10.4103/0974-2700.82210. PubMed DOI PMC
Dutton RP. Hemostaticresuscitation. British J Anesthesia. 2012;109(S1):i39–i46. doi: 10.1093/bja/aes389. PubMed DOI
Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Filipescu D, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Rossaint R. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76. doi: 10.1186/cc12685. PubMed DOI PMC
Bursa F, Olos T, Pleva L, Kula R, Jahoda J, Procházka V, Kopácek I. Metabolism monitoring with microdialysis in the intensive care. Cas Lek Cesk. 2011;150(11):605–609. PubMed
Waelgaard L, Dahl BM, Kvarstein G, Tønnessen TI. Tissue gas tension and tissue metabolites for detection of organ hypoperfusion and ischemia. Acta Anaesthesiol Scand. 2012;56(2):200–209. doi: 10.1111/j.1399-6576.2011.02572.x. PubMed DOI
Suistomaa M, Uusaro A, Parviainen I, Ruokonen E. Resolution and outcome of acute circulatory failure does not correlate with hemodynamics. Critical Care. 2003;7:R52–R58. doi: 10.1186/cc2332. PubMed DOI PMC
Khan S, Allard S, Weaver A, Barber C, Davenport R, Brohi K. A major haemorrhage protocol improves the delivery of blood component therapy and reduces waste in trauma massive transfusion. Injury. 2013;44(5):587–592. doi: 10.1016/j.injury.2012.09.029. PubMed DOI
Hsu JM, Hitos K, Fletcher JP. Identifying the bleeding trauma patient: predictive factors for massive transfusion in an Australasian trauma population. J Trauma Acute Care Surg. 2013;75(3):359–364. doi: 10.1097/TA.0b013e31829e2248. PubMed DOI
Elmer J, Wilcox SR, Raja AS. Massive transfusion in traumatic shock. J Emerg Med. 2013;44(4):829–838. doi: 10.1016/j.jemermed.2012.11.025. PubMed DOI
Tien H, Nascimento B, Jr, Callum J, Rizoli S. An approach to transfusion and hemorrhage in trauma: current perspectives on restrictive transfusion strategies. Can J Surg. 2007;50(3):202–209. PubMed PMC
Morel N, Delaunay F, Dubuisson V. Management of bleeding following major trauma: is a targethaemoglobin of 7 to 9 g/dl high enough? Critical Care. 2013;17:442. doi: 10.1186/cc12767. PubMed DOI PMC
Burša F, Pleva L. Anaerobic metabolism associated with traumatic hemorrhagic shock monitored by microdialysis of muscle tissue is dependent on the levels of hemoglobin and central venous oxygen saturation: a prospective, observational study. Scand J Trauma Resusc Emerg Med. 2014;22(1):11. doi: 10.1186/1757-7241-22-11. PubMed DOI PMC
Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–740. doi: 10.1097/ALN.0b013e3181863117. PubMed DOI
Rhee P, Wang D, Ruff P, Austin B, DeBraux S, Wolcott K, Burris D, Ling G, Sun L. Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med. 2000;28:74–78. doi: 10.1097/00003246-200001000-00012. PubMed DOI
Nohé B, Ploppa A, Schmidt V, Unertl K. Volume replacement in intensive care medicine. Anaesthesist. 2011;60(5):457–464. doi: 10.1007/s00101-011-1860-9. PubMed DOI
Meregalli A, Oliveira RP, Friedman G. Occulthypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Critical Care. 2004;8:R60–R65. doi: 10.1186/cc2423. PubMed DOI PMC
Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32(9):1825–1831. doi: 10.1097/01.CCM.0000138558.16257.3F. PubMed DOI
Brucculeri S, Urso C, Caimi G. The role of lactate besides the lactic acidosis. ClinTer. 2013;164(3):e223–e238. PubMed
De Backer D. Lactic acidosis. Intensive Care Med. 2003;29:699–702. PubMed
Ohashi H, Kawasaki N, Fujitani S. Utility of microdialysis to detect the lactate/pyruvate ratio in subcutaneous tissue for the reliable monitoring of haemorrhagic shock. J Smooth Muscle Res. 2009;45(6):269–278. doi: 10.1540/jsmr.45.269. PubMed DOI
Larentzakis A, Toutouzas KG, Papalois A, Lapidakis G, Doulgerakis S, Doulami G, Drimousis P, Theodorou D, Katsaragakis S. Porcine model of haemorrhagic shock with microdialysis monitoring. J Surg Res. 2013;179(1):e177–e182. doi: 10.1016/j.jss.2012.01.040. PubMed DOI
Dimopoulou I, Nikitas N, Orfanos SE, Theodorakopoulou M, Vassiliadi D, Ilias I, Ikonomidis I, Boutati E, Maratou E, Tsangaris I, Karkouli G, Tsafou E, Diamantakis A, Kopterides P, Maniatis N, Kotanidou A, Armaganidis A, Ungerstedt U. Kinetics of adipose tissue microdialysis-derived metabolites in critically ill septic patients:associations with sepsis severity and clinical outcome. Shock. 2011;35(4):342–348. doi: 10.1097/SHK.0b013e318206aafa. PubMed DOI
Suistomaa M, Ruokonen E, Kari A, Takala J. Time-pattern of lactate and lactate to pyruvate ratio in the first 24 hours of intensive care emergency admissions. Shock. 2000;14(1):8–12. doi: 10.1097/00024382-200014010-00002. PubMed DOI
Tánczos K, Molnár Z. The oxygen supply–demand balance: a monitoring challenge. Best Pract Res Clin Anaesthesiol. 2013;27(2):201–207. doi: 10.1016/j.bpa.2013.06.001. PubMed DOI
Della Rocca G, Pompei L. Goal-directed therapy in anesthesia: any clinical impact or just a fashion? Minerva Anestesiol. 2011;77(5):545–553. PubMed
Caille V, Squara P. Oxygen uptake-to-delivery relationship: a way to assess adequate flow. Crit Care. 2006;10(3):S4. doi: 10.1186/cc4831. PubMed DOI PMC
Velmahos GC, Demetriades D, Shoemaker WC, Chan LS, Tatevossian R, Wo CC, Vassiliu P, Cornwell EE, 3rd, Murray JA, Roth B, Belzberg H, Asensio JA, Berne TV. Endpoints of resuscitation of critically injured patients: normal or supranormal? A prospective randomized trial. Ann Surg. 2000;232(3):409–418. doi: 10.1097/00000658-200009000-00013. PubMed DOI PMC
Hayes MA, Timmings AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–1722. doi: 10.1056/NEJM199406163302404. PubMed DOI
Sisak K, Manolis M, Hardy BM, Enninghorst N, Bendinelli C, Balogh ZJ. Acute transfusion practice during trauma resuscitation: who, when, where and why? Injury. 2013;44(5):581–586. doi: 10.1016/j.injury.2012.08.031. PubMed DOI