Phosphate-independent utilization of phosphonoacetic acid as sole phosphorus source by a psychrophilic strain of Geomyces pannorum P15
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24570323
PubMed Central
PMC4133637
DOI
10.1007/s12223-014-0309-3
Knihovny.cz E-zdroje
- MeSH
- Ascomycota růst a vývoj metabolismus MeSH
- dusík metabolismus MeSH
- fosfáty metabolismus MeSH
- fosfor metabolismus MeSH
- kyselina fosfonoctová metabolismus MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- fosfáty MeSH
- fosfor MeSH
- kyselina fosfonoctová MeSH
- uhlík MeSH
A psychrophilic fungal strain of Geomyces pannorum P15 was screened for its ability to utilize a range of synthetic and natural organophosphonate compounds as the sole source of phosphorus, nitrogen, or carbon. Only phosphonoacetic acid served as a phosphorus source for microbial growth in phosphate-independent manner. Substrate metabolism did not lead to extracellular release of inorganic phosphate. No phosphonate metabolizing enzyme activity was detectable in cell-free extracts prepared from Geomyces biomass pregrown on 2 mmol/L phosphonoacetic acid.
Zobrazit více v PubMed
Adams MM, Gomez-Garcia MR, Grossman AR, Bhaya D. Phosphorus deprivation responses and phosphonate utilization in thermophilic Synechococcus sp. from microbial mats. J Bacteriol. 2008;190:8171–8184. doi: 10.1128/JB.01011-08. PubMed DOI PMC
Bradford MM. A rapid and sensitive detection method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Dyhrman ST, Haley ST (2006) Phosphorus scavenging in the unicellular marine diazotroph PubMed PMC
Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320:1034–1039. doi: 10.1126/science.1153213. PubMed DOI
Fan JY, Yang GX, Zhao HY, Shi GY, Geng YC, Hou TP, Tao K. Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4 from soil. J Gen Appl Microbiol. 2012;58(4):263–271. doi: 10.2323/jgam.58.263. PubMed DOI
Feller G. Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci. 2003;60:648–662. doi: 10.1007/s00018-003-2155-3. PubMed DOI PMC
Fenner K, Canonica S, Wackett LP, Elsner M. Evaluating pesticide degradation in the environment blind spots and emerging opportunities. Science. 2013;341:752–758. doi: 10.1126/science.1236281. PubMed DOI
Ford JL, Kaakoush NO, Mendz GL. Phosphonate metabolism in Helicobacter pylori. Antonie Van Leeuwenhoek. 2010;97:51–60. doi: 10.1007/s10482-009-9387-7. PubMed DOI
Forlani G. Properties of the 5-enol-pyruvyl-shikimate-3-phosphate synthase isoforms isolated from maize cultured cells. J Plant Physiol. 1997;150:369–375. doi: 10.1016/S0176-1617(97)80084-3. DOI
Forlani G, Klimek-Ochab M, Jaworski J, Lejczak B, Picco AM. Phosphonoacetic acid utilization by fungal isolates: occurrence and properties of a phosphonoacetate hydrolase in some penicillia. Mycol Res. 2006;110:1455–1463. doi: 10.1016/j.mycres.2006.09.006. PubMed DOI
Forlani G, Prearo V, Wieczorek D, Kafarski P, Lipok J. Phosphonate degradation by Spirulina strains: cyanobacterial biofilters for the removal of anticorrosive polyphosphpsphonates from wastewater. Enzyme Microb Technol. 2011;48:299–305. doi: 10.1016/j.enzmictec.2010.12.005. PubMed DOI
Fox EM, Mendz GL. Phosphonate degradation in microorganisms. Enzyme Microb Technol. 2006;40:145–150. doi: 10.1016/j.enzmictec.2005.10.047. DOI
Georlette D, Blaise V, Collins T, D’Amico S, Gratioa E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Lett. 2004;28:25–42. doi: 10.1016/j.femsre.2003.07.003. PubMed DOI
Gomez-Garcia MR, Davison M, Blain-Hartnung M, Grossman AR, Bhaya D. Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats. ISME J. 2011;5:141–149. doi: 10.1038/ismej.2010.96. PubMed DOI PMC
He SM, Wathier M, Podzelinska K, Wong M, McSorley FR, Asfaw A, Hove-Jensen B, Jia Z, Zechel DL. Structure and mechanism of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway. Biochemistry. 2011;50:8603–8615. doi: 10.1021/bi2005398. PubMed DOI
Hove-Jansen B, McSorley FR, Zechel DL. Physiological role of phnP-specified phosphoribosyl cyclic phosphodiesterase in catabolism of organophosphonic acids by the carbon-phosphorus lyase pathway. J Am Chem Soc. 2011;133:3617–3624. doi: 10.1021/ja1102713. PubMed DOI
Huang JL, Su ZC, Xu Y. The evolution of microbial phosphonate degradative pathways. J Mol Evol. 2005;61:682–690. doi: 10.1007/s00239-004-0349-4. PubMed DOI
Jochimsen B, Lolle S, McSorley FR, Nabi M, Stougaard J, Zechel DL, Hove-Jensen B. Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway. Proc Natl Acad Sci U S A. 2011;108(28):11393–11398. doi: 10.1073/pnas.1104922108. PubMed DOI PMC
Kamat SS, Wiliams HJ, Raushel FM. Intermediates in the transformations of phosphonates to phosphate by bacteria. Nature. 2011;480:570–573. PubMed PMC
Kamat SS, Williams HJ, Dangott LJ, Chakrabarti M, Raushel FM. The catalytic mechanism for aerobic formation of methane by bacteria. Nature. 2013;497(7447):132–136. doi: 10.1038/nature12061. PubMed DOI
Karl DM (2000) Phosphorus, the staff of life. Nature 406:31–33 PubMed
Kertesz M, Elorriaga A, Amrhein N. Evidence for two distinct phosphonate-degrading enzymes (C-P lyases) in Arthrobacter sp. GLP-1. Biodegradation. 1991;2:53–59. doi: 10.1007/BF00122425. PubMed DOI
Klimek-Ochab M. Degradation of phosphonates by fungi. Curr Trends Microbiol. 2008;4:91–96.
Klimek-Ochab M, Lejczak B, Forlani G. A metal-independent hydrolase from a Penicillium oxalicum strain able to use phosphonoacetic acid as the sole source of phosphorus. FEMS Microbiol Lett. 2003;222:205–209. doi: 10.1016/S0378-1097(03)00301-X. PubMed DOI
Klimek-Ochab M, Raucci G, Lejczak B, Forlani G. Phosphonoacetate hydrolase from Penicillium oxalicum: purification and properties, phosphate starvation-independent expression and partial sequencing. Res Microbiol. 2006;157:125–135. doi: 10.1016/j.resmic.2005.06.002. PubMed DOI
Kochkina GA, Ivanushkina NE, Akimov VN, Gilichinskii DA, Ozerskaya SM. Halo- and psychrotolerant Geomyces fungi from Arctic cryopegs and marine deposits. Microbiology. 2007;76(1):31–38. doi: 10.1134/S0026261707010055. PubMed DOI
Kononowa SV, Nesmeyanowa MA. Phosphonates and their degradation by microorganisms. Biochem Mosc. 2002;67:184–1952. doi: 10.1023/A:1014409929875. PubMed DOI
Kulakova AN, Wisdom GB, Kulakov LA, Quinn JP. The purification and characterization, of phosphonopyruvate hydrolase, a novel carbon-phosphorus bond cleavage enzyme from Variovorax sp. Pal2. J Biol Chem. 2003;278:23426–23431. doi: 10.1074/jbc.M301871200. PubMed DOI
Luo HW, Zhang HM, Long RA, Benner R. Depth distributions of alkaline phosphatase and phosphonate utilization genes in the North Pacific Subtropical Gyre. Aquat Microb Ecol. 2011;62(1):61–69. doi: 10.3354/ame01458. DOI
Martinez A, Tyson GW, Delong EF. Widerspread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses. Environ Microbiol. 2009;12:222–238. doi: 10.1111/j.1462-2920.2009.02062.x. PubMed DOI
McGrath JW, Kulakowa AN, Quinn JP. A comparison of three bacterial phosphonoacetate hydrolases from different environmental sources. J Appl Microbiol. 1999;86:834–840. doi: 10.1046/j.1365-2672.1999.00764.x. DOI
McGrath JW, Chin JP, Quinn JP. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nat Rev Microbiol. 2013;11(6):412–419. doi: 10.1038/nrmicro3011. PubMed DOI
McMullan G, Quinn JP. In vitro characterization of a phosphate starvation-independent carbon-phosphorus bond cleavage activity in Pseudomonas fluoresens 23f. J Bacteriol. 1994;176:320–324. PubMed PMC
Nowack B. Environmental chemistry of phosphonates. Water Res. 2003;37(11):2533–2546. doi: 10.1016/S0043-1354(03)00079-4. PubMed DOI
Obojska A, Ternan NG, Lejczak B, Kafarski P, McMullan G. Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol. 2002;68(4):2081–2084. doi: 10.1128/AEM.68.4.2081-2084.2002. PubMed DOI PMC
Quinn JP, Kulakova AN, Cooley NA, McGrath JW. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling. Environ Microbiol. 2007;9(10):2392–2400. doi: 10.1111/j.1462-2920.2007.01397.x. PubMed DOI
Russell RJM, Gerike U, Danson MJ, Hough DW, Taylor GL. Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure. 1998;6:3521–361. doi: 10.1016/S0969-2126(98)00037-9. PubMed DOI
Sviridov AV, Shushkova TV, Zelenkowa NF, Vinokurova NG, Morgunov I, Ermakowa IT, Leontievsky AA. Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropic and Achromobacter sp. Appl Microbiol Biotechnol. 2012;93:787–796. doi: 10.1007/s00253-011-3485-y. PubMed DOI
Van Mooy BA, Fredrics HF, Pedler BE, Dyhrman ST, Karl DM, Koblizek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappé MS, Webb EA. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature. 2009;458:69–72. doi: 10.1038/nature07659. PubMed DOI
White AK, Metcalf WW. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite. J Bacteriol. 2004;186:4730–4739. doi: 10.1128/JB.186.14.4730-4739.2004. PubMed DOI PMC
Zhao Y, Wakamatsu T, Doi K, Sakuraba H, Ohshima T. A psychrophilic leucine dehydrogenase from Sporosarcina psychrophila: purification, characterization, gene sequencing and crystal structure analysis. J Mol Catal B Enzym. 2012;83:652–672. doi: 10.1016/j.molcatb.2012.06.018. DOI