Mycobacterium tuberculosis phosphoenolpyruvate carboxykinase is regulated by redox mechanisms and interaction with thioredoxin
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24659783
PubMed Central
PMC4036320
DOI
10.1074/jbc.m113.536748
PII: S0021-9258(20)38792-5
Knihovny.cz E-resources
- Keywords
- Enzyme Kinetics, Hypoxia, Metabolism, Mycobacterium Tuberculosis, Oxidation-Reduction, Phosphoenolpyruvate Carboxykinase, Thioredoxin,
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Citric Acid Cycle physiology MeSH
- Phosphoenolpyruvate Carboxykinase (ATP) genetics metabolism MeSH
- Mycobacterium tuberculosis enzymology genetics MeSH
- Oxidation-Reduction MeSH
- Gene Expression Regulation, Enzymologic physiology MeSH
- Gene Expression Regulation, Bacterial physiology MeSH
- Thioredoxins genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Phosphoenolpyruvate Carboxykinase (ATP) MeSH
- Thioredoxins MeSH
Tuberculosis remains a major health concern worldwide. Eradication of its causative agent, the bacterial pathogen Mycobacterium tuberculosis, is particularly challenging due to a vast reservoir of latent carriers of the disease. Despite the misleading terminology of a so-called dormant state associated with latent infections, the bacteria have to maintain basic metabolic activities. Hypoxic conditions have been widely used as an in vitro system to study this dormancy. Such studies identified a rearrangement of central carbon metabolism to exploit fermentative processes caused by the lack of oxygen. Phosphoenolpyruvate carboxykinase (Pck; EC 4.1.1.32) is the enzyme at the center of these metabolic rearrangements. Although Pck is associated with gluconeogenesis under standard growth conditions, the enzyme can catalyze the reverse reaction, supporting anaplerosis of the tricarboxylic acid cycle, under conditions leading to slowed or stopped bacterial replication. To study the mechanisms that regulate the switch between two Pck functions, we systematically investigated factors influencing the gluconeogenic and anaplerotic reaction kinetics. We demonstrate that a reducing environment, as found under hypoxia-triggered non-replicating conditions, accelerates the reaction in the anaplerotic direction. Furthermore, we identified proteins that interact with Pck. The interaction between Pck and the reduced form of mycobacterial thioredoxin, gene expression of which is increased under hypoxic conditions, also increased the Pck anaplerotic activity. We thus propose that a reducing environment and the protein-protein interaction with thioredoxin in particular enable the Pck anaplerotic function under fermentative growth conditions.
See more in PubMed
World Health Organization (2013) Global Tuberculosis Report 2013, World Health Organization, Geneva
Rohde K. H., Abramovitch R. B., Russell D. G. (2007) Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2, 352–364 PubMed
Waddell S. J., Butcher P. D. (2007) Microarray analysis of whole genome expression of intracellular Mycobacterium tuberculosis. Curr. Mol. Med. 7, 287–296 PubMed PMC
Berney M., Cook G. M. (2010) Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS One 5, e8614. PubMed PMC
Via L. E., Lin P. L., Ray S. M., Carrillo J., Allen S. S., Eum S. Y., Taylor K., Klein E., Manjunatha U., Gonzales J., Lee E. G., Park S. K., Raleigh J. A., Cho S. N., McMurray D. N., Flynn J. L., Barry C. E. (2008) Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun. 76, 2333–2340 PubMed PMC
Rohde K. H., Veiga D. F., Caldwell S., Balázsi G., Russell D. G. (2012) Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog. 8, e1002769. PubMed PMC
Kendall S. L., Withers M., Soffair C. N., Moreland N. J., Gurcha S., Sidders B., Frita R., Ten Bokum A., Besra G. S., Lott J. S., Stoker N. G. (2007) A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol. Microbiol. 65, 684–699 PubMed PMC
Srinivasan V., Morowitz H. J. (2006) Ancient genes in contemporary persistent microbial pathogens. Biol. Bull. 210, 1–9 PubMed
Watanabe S., Zimmermann M., Goodwin M. B., Sauer U., Barry C. E., 3rd, Boshoff H. I. (2011) Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog. 7, e1002287. PubMed PMC
Shi L., Sohaskey C. D., Pfeiffer C., Datta P., Parks M., McFadden J., North R. J., Gennaro M. L. (2010) Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol. Microbiol. 78, 1199–1215 PubMed PMC
Sauer U., Eikmanns B. J. (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol. Rev. 29, 765–794 PubMed
Marrero J., Rhee K. Y., Schnappinger D., Pethe K., Ehrt S. (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc. Natl. Acad. Sci. U.S.A. 107, 9819–9824 PubMed PMC
Liu K., Yu J., Russell D. G. (2003) pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology 149, 1829–1835 PubMed
Beste D. J., Bonde B., Hawkins N., Ward J. L., Beale M. H., Noack S., Nöh K., Kruger N. J., Ratcliffe R. G., McFadden J. (2011) 13C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation. PLoS Pathog. 7, e1002091. PubMed PMC
Beste D. J., Nöh K., Niedenführ S., Mendum T. A., Hawkins N. D., Ward J. L., Beale M. H., Wiechert W., McFadden J. (2013) 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem. Biol. 20, 1012–1021 PubMed PMC
Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 PubMed
Ríos S. E., Nowak T. (2002) Role of cysteine 306 in the catalytic mechanism of Ascaris suum phosphoenolpyruvate carboxykinase. Arch. Biochem. Biophys. 404, 25–37 PubMed
Ballard F. J. (1970) Kinetic studies with cytosol and mitochondrial phosphoenolpyruvate carboxykinases. Biochem. J. 120, 809–814 PubMed PMC
Dharmarajan L., Case C. L., Dunten P., Mukhopadhyay B. (2008) Tyr235 of human cytosolic phosphoenolpyruvate carboxykinase influences catalysis through an anion-quadrupole interaction with phosphoenolpyruvate carboxylate. FEBS J. 275, 5810–5819 PubMed
Buescher J. M., Moco S., Sauer U., Zamboni N. (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal. Chem. 82, 4403–4412 PubMed
Makinen A. L., Nowak T. (1989) A reactive cysteine in avian liver phosphoenolpyruvate carboxykinase. J. Biol. Chem. 264, 12148–12157 PubMed
Li M. Z., Elledge S. J. (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4, 251–256 PubMed
Płocinski P., Laubitz D., Cysewski D., Stodus K., Kowalskaand K., Dziembowski A. (2014) Identification of protein partners in Mycobacteria using a single step affinity purification method. PLoS One 9, e91380. PubMed PMC
Tomecki R., Kristiansen M. S., Lykke-Andersen S., Chlebowski A., Larsen K. M., Szczesny R. J., Drazkowska K., Pastula A., Andersen J. S., Stepien P. P., Dziembowski A., Jensen T. H. (2010) The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J. 29, 2342–2357 PubMed PMC
Mukhopadhyay B., Concar E. M., Wolfe R. S. (2001) A GTP-dependent vertebrate-type phosphoenolpyruvate carboxykinase from Mycobacterium smegmatis. J. Biol. Chem. 276, 16137–16145 PubMed
Zamboni N., Maaheimo H., Szyperski T., Hohmann H. P., Sauer U. (2004) The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis. Metab. Eng. 6, 277–284 PubMed
Dyson J. E., Anderson W. B., Nordlie R. C. (1969) Inhibitory effect of physiological bicarbonate ion levels on the activities of glucose 6-phosphate phosphohydrolase. J. Biol. Chem. 244, 560–566 PubMed
Holyoak T., Sullivan S. M., Nowak T. (2006) Structural insights into the mechanism of PEPCK catalysis. Biochemistry 45, 8254–8263 PubMed
da Silva Dantas A., Patterson M. J., Smith D. A., Maccallum D. M., Erwig L. P., Morgan B. A., Quinn J. (2010) Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. Mol. Cell. Biol. 30, 4550–4563 PubMed PMC
Jaeger T., Budde H., Flohé L., Menge U., Singh M., Trujillo M., Radi R. (2004) Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis. Arch. Biochem. Biophys. 423, 182–191 PubMed
Abramovitch R. B., Rohde K. H., Hsu F. F., Russell D. G. (2011) aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol. Microbiol. 80, 678–694 PubMed PMC
Johnson T. A., Holyoak T. (2012) The Ω-loop lid domain of phosphoenolpyruvate carboxykinase is essential for catalytic function. Biochemistry 51, 9547–9559 PubMed PMC
Sturm N., Jortzik E., Mailu B. M., Koncarevic S., Deponte M., Forchhammer K., Rahlfs S., Becker K. (2009) Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum. PLoS Pathog. 5, e1000383. PubMed PMC
Akif M., Khare G., Tyagi A. K., Mande S. C., Sardesai A. A. (2008) Functional studies of multiple thioredoxins from Mycobacterium tuberculosis. J. Bacteriol. 190, 7087–7095 PubMed PMC
Sherman D. R., Voskuil M., Schnappinger D., Liao R., Harrell M. I., Schoolnik G. K. (2001) Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin. Proc. Nat. Acad. Sci. 98, 7534–7539 PubMed PMC