Catalytic performance of Metal-Organic-Frameworks vs. extra-large pore zeolite UTL in condensation reactions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24790940
PubMed Central
PMC3982579
DOI
10.3389/fchem.2013.00011
Knihovny.cz E-zdroje
- Klíčová slova
- MOFs, Prins reaction, UTL, condensation reactions, zeolites,
- Publikační typ
- časopisecké články MeSH
Catalytic behavior of isomorphously substituted B-, Al-, Ga-, and Fe-containing extra-large pore UTL zeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensation of 1-naphthol with ethylacetoacetate, and Prins reaction of β-pinene with formaldehyde and compared with large-pore aluminosilicate zeolite beta and representative Metal-Organic-Frameworks Cu3(BTC)2 and Fe(BTC). The yield of the target product over the investigated catalysts in Knoevenagel condensation increases in the following sequence: (Al)beta < (Al)UTL < (Ga)UTL < (Fe)UTL < Fe(BTC) < (B)UTL < Cu3(BTC)2 being mainly related to the improving selectivity with decreasing strength of active sites of the individual catalysts. The catalytic performance of Fe(BTC), containing the highest concentration of Lewis acid sites of the appropriate strength is superior over large-pore zeolite (Al)beta and B-, Al-, Ga-, Fe-substituted extra-large pore zeolites UTL in Prins reaction of β-pinene with formaldehyde and Pechmann condensation of 1-naphthol with ethylacetoacetate.
Zobrazit více v PubMed
Alarcon E. A., Correa L., Montes C., de Villa A. L. (2010). Nopol production over Sn-MCM-41 synthesized by different procedures - Solvent effects. Micropor. Mesopor. Mater. 136, 59–67 10.1016/j.micromeso.2010.07.021 DOI
Andersen N. H., Hadley S. W., Kelly J. D., Bacon E. R. (1985). Intramolecular olefinic aldehyde Prins reactions for the construction of 5-membered rings. J. Org. Chem. 50, 4144–4151 10.1021/jo00221a034 DOI
Bartoli G., Beleggia R., Giuli S., Giuliani A., Marcantoni E., Massaccesi M., et al. (2006). The CeCl3·7H2O–NaI system as promoter in the synthesis of functionalized trisubstituted alkenes via Knoevenagel condensation. Tetrahedron Lett. 47, 6501–6504 10.1016/j.tetlet.2006.07.031 DOI
Bennazha J., Zahouilly M., Boukhari A., Hol E. A. (2003). Investigation of the basis of catalytic activity of solid state phosphate complexes in the Knoevenagel condensation. J. Mol. Catal. A Chem. 202, 247–252 10.1016/S1381-1169(03)00208-5 DOI
Bigi F., Chesini L., Maggi R., Sartori G. (1999). Montmorillonite KSF as an inorganic, water stable, and reusable catalyst for the Knoevenagel synthesis of coumarin-3-carboxylic acids. J. Org. Chem. 64, 1033–1035 10.1021/jo981794r PubMed DOI
Bledsoe J. O. (1997). Terpenoids, in Kirk-Othmer Encyclopedia of Chemical Technology, eds Kroschwitz J. I., Howe-Grant M. (New York, NY: Wiley; ), 833–882
Borah H. N., Deb M. L., Boruah R. C., Bhuyan P. J. (2005). Stereoselective intramolecular hetero Diels–Alder reactions of 1-oxa-1, 3-butadienes: synthesis of novel annelated pyrrolo[1, 2-a]indoles. Tetrahedron Lett. 46, 3391–3393 10.1016/j.tetlet.2005.03.091 DOI
Calvino-Casilda V., Martin-Aranda R. M., Lopez-Peinado A. J., Sobczak I., Ziolek M. (2009). Catalytic properties of alkali metal-modified oxide supports for the Knoevenagel condensation: kinetic aspects. Catal. Tod. 142, 278–282 10.1016/j.cattod.2008.08.023 DOI
Calvino-Casilda V., Pérez-Mayoral E., Martín-Aranda R. M., Zienkiewicz Z., Sobczak I., Ziolek M. (2010). Isomerization of Eugenol under ultrasound activation catalyzed by alkali modified mesoporous NbMCM-41. Top. Catal. 53, 179–186 10.1007/s11244-009-9422-y DOI
Canter F. W., Curd F. H., Robertson A. (1931). Hydroxy-carbonyl compounds. Part, I. I. I. The preparation of coumarines and 1 4-benzopyrones from phloroglucinol and resorcinol. J. Chem. Soc. 1, 1255–1265 10.1039/jr9310001255 DOI
Chae H. K., Siberio-Perez D. Y., Kim J., Go Y. B., Eddaoudi M., Matzger A. J., et al. (2004). A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 10.1038/nature02311 PubMed DOI
Chui S. S. Y., Lo S. M. F., Charmant J. P. H., Orpen A. G., Williams I. D. (1999). A chemically functionalizable nanoporous material [Cu-3(TMA)(2)(H2O)(3)](n). Science 283, 1148–1150 10.1126/science.283.5405.1148 PubMed DOI
Corma A., Díaz-Cabañas M. J., Rey F. (2004). ITQ-15: the first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun. 40, 1356–1357 10.1039/b406572g PubMed DOI
Corma A., Fornes V., Martin-Aranda R. M., Garcia H., Primo J. (1990). Zeolites as base catalysts: condensation of aldehydes with derivatives of malonic esters. Appl.Catal. 59, 237–248 10.1016/S0166-9834(00)82201-0 DOI
Corma A., García H., Llabrés i Xamena F. X. (2010). Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 10.1021/cr9003924 PubMed DOI
Corma A., Martin-Aranda R. M. (1993). Application of solid base catalysts in the preparation of prepolymers by condensation of ketones and malononitrile. Appl. Catal. A Gen. 105, 271–279 10.1016/0926-860X(93)80252-L DOI
Corma A., Renz M. (2007). Water-resistant Lewis-acid sites: carbonyl-ene reactions catalyzed by tin-containing, hydrophobic molecular sieves. ARKIVOC 8, 40–48
Das Gupta A. K., Chatterje R. M., Das K. R., Green B. (1969). Coumarins and related compounds. 4. Aluminium chloride-catalysed reaction of phenols with methyl acrylate—a new approach to synthesis of hydroxycoumarins. J. Chem. Soc. C 1, 29–33 10.1039/j39690000029 DOI
de Villa A. L., Alarcon P. E. (2002). Synthesis of nopol over MCM-41 catalysts. Chem. Commun. 22, 2654–2655 10.1039/b206239a PubMed DOI
de Villa A. L., Alarcon P. E., de Monteas C. (2005). Nopol synthesis over Sn-MCM-41 and Sn-kenyaite catalysts. Catal. Tod. 107–108, 942–948 10.1016/j.cattod.2005.07.049 PubMed DOI
Dhakshinamoorthy A., Alvaro M., Horcajada P., Gibson E., Vishnuvarthan M., Vimont A., et al. (2012). Comparison of porous iron trimesates Basolite F300 and MIL-100(Fe) as heterogeneous catalysts for Lewis acid and oxidation reactions: roles of structural defects and stability. ACS Catal. 2, 2060–2065 10.1021/cs300345b DOI
Dhakshinamoorthy A., Opanasenko M., Čejka J., Garcia H. (2013). Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups. Adv. Synth. Cat. 355, 247–268
Eddaoudi M., Kim J., Rosi N., Vodak D., Wachter J., O'Keeffe M., et al. (2002). Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 10.1126/science.1067208 PubMed DOI
Emeis C. A. (1993). Determination of integrated molar extinction coefficients for infrared-absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141, 347–354 10.1006/jcat.1993.1145 DOI
Freeman F. (1981). Properties and reactions of ylidenemalononitriles. Chem. Rev. 80, 329–350 10.1021/cr60326a004 DOI
Green B., Crane R. I., Khaidem I. S., Leighton R. S., Newaz S. S., Smyser T. E. (1985). Synthesis of steroidal 16, 17-fused unsaturated delta-lactones. J. Org. Chem. 50, 640–644 10.1021/jo00205a016 DOI
Hoefnagel A. J., Gunnewegh E. A., Downing R. S., van Bekkum H. (1995). Synthesis of 7-hydroxycoumarins catalyzed by solid acid catalysts. J. Chem. Soc. Chem. Commun. 225–226 10.1039/c39950000225 DOI
Jiang J., Yu J., Corma A. (2010). Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures. Angew. Chem. Int. Ed. Engl. 49, 3120–3145 10.1002/anie.200904016 PubMed DOI
Joshi U. D., Joshi P. N., Tamhankar S. S., Joshi V. V., Rode C. V., Shiralkar V. P. (2003). Effect of nonframework cations and crystallinity on the basicity of NaX zeolites. Appl. Catal. A Gen. 239, 209–220 10.1016/S0926-860X(02)00391-5 DOI
Kalita P., Sathyaseelan B., Mano A., Javaid Zaidi S. M., Chari M. A., Vinu A. (2010). Synthesis of superacid-functionalized mesoporous nanocages with tunable pore diameters and their application in the synthesis of coumarins. Chem. Eur. J. 16, 2843–2851 10.1002/chem.200902531 PubMed DOI
Karimi B., Behzadnia H. (2011). Periodic mesoporous silica chloride (PMSCl) as an efficient and recyclable catalyst for the Pechmann reaction. Catal. Commun. 12, 1432–1436 10.1016/j.catcom.2011.05.019 DOI
Karimi B., Zareyee D. (2008). Design of a highly efficient and water-tolerant sulfonic acid nanoreactor based on tunable ordered porous silica for the von Pechmann reaction. Org. Lett. 10, 3989–3992 10.1021/ol8013107 PubMed DOI
Kumbhare R. M., Sridhar M. (2008). Magnesium fluoride catalyzed Knoevenagel reaction: an efficient synthesis of electrophilic alkenes. Catal. Comm. 9, 403–405 10.1016/j.catcom.2007.07.027 DOI
Lai M., Ng C. P., Martin-Aranda R., Yeung K. L. (2003). Knoevenagel condensation reaction in zeolite membrane microreactor. Micropor.Mesopor. Mater. 66, 239–252 10.1016/j.micromeso.2003.09.014 DOI
Lau W. N., Yeung K. L., Martin-Aranda R. (2008). Knoevenagel condensation reaction between benzaldehyde and ethyl acetoacetate in microreactor and membrane microreactor. Micropor. Mesopor. Mater. 115, 156–163 10.1016/j.micromeso.2007.12.036 DOI
Li C.-J. (2005). Organic reactions in aqueous media with a focus on carbon-carbon bond formations: a decade update. Chem. Rev. 105, 3095–3166 10.1021/cr030009u PubMed DOI
Li G. X., Gu Y. L., Ding Y., Zhang H. P., Wang J. M., Gao Q., et al. (2004). Wells-Dawson type molybdovanadophosphoric heteropolyacids catalyzed Prins cyclization of alkenes with paraformaldehyde under mild conditions—a facile and efficient method to 1, 3-dioxane derivatives. J. Mol. Catal. A: Chem. 218, 147–152 10.1016/j.molcata.2004.04.021 DOI
Li H., Eddaoudi M., O'Keeffe M., Yaghi O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 10.1038/46248 DOI
Li T. S., Zhang Z. H., Yang F., Fu C. G. (1998). Montmorillonite clay catalysis. Part 7.1 an environmentally friendly procedure for the synthesis of coumarins via Pechmann condensation of phenols with ethyl acetoacetate. J. Chem. Res. (S) 1, 38–39
Opanasenko M., Dhakshinamoorthy A., Shamzhy M., Nachtigall P., Horacek M., Garcia H., et al. (2013a). Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol. 3, 500–507 10.1039/c2cy20586f DOI
Opanasenko M., Shamzhy M., Čejka J. (2013b). Solid acid catalysts for coumarin synthesis by the Pechmann reaction: MOFs versus zeolites. ChemCatChem 5, 1024–1031 10.1002/cctc.201200232 DOI
Paillaud J.-L., Harbuzaru B., Patarin J. (2004). Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings. Science 304, 990–992 10.1126/science.1098242 PubMed DOI
Patil M. V., Yadav M. K., Jasra R. V. (2007). Prins condensation for synthesis of nopol from P-pinene and paraformaldehyde on novel Fe-Zn double metal cyanide solid acid catalyst. J. Mol. Catal. A Chem. 273, 39–47 10.1016/j.molcata.2007.03.054 DOI
Pérez-Mayoral E., Musilová Z., Gil B., Marszalek B., Položij M., Nachtigall P., et al. (2012). Synthesis of quinolines via Friedlander reaction catalyzed by CuBTC metal-organic-framework. Dalton Trans. 44, 4036–4044 10.1039/c2dt11978a PubMed DOI
Pillai U. R., Sahle-Demessie E. (2004). Mesoporous iron phosphate as an active, selective and recyclable catalyst for the synthesis of nopol by Prins condensation. Chem. Commun. 7, 826–827 10.1039/b313747c PubMed DOI
Rajasekhar Pullabhotla V. S. R., Rahman A., Jonnalagadda S. B. (2009). Selective catalytic Knoevenagel condensation by Ni–SiO2 supported heterogeneous catalysts: an environmentally benign approach. Catal. Comm. 10, 365–369 10.1016/j.catcom.2008.09.021 DOI
Reddy T. I., Verma R. S. (1997). Rare-earth (RE) exchanged NaY zeolite promoted Knoevenagel condensation. Tetrahedron Lett. 38, 1721–1724 10.1016/S0040-4039(97)00180-9 DOI
Russell A., Frye J. R. (1955). 2, 6-dihydroxyacetophenone. Org. Synth. 3, 281–283
Sabou R., Hoelderich W. F., Ramprasad D., Weinand R. (2005). Synthesis of 7-hydroxy-4-methyleoumarin via the Pechmann reaction with Amberlyst ion-exchange resins as catalysts. J. Catal. 232, 34–37 10.1016/j.jcat.2005.02.002 DOI
Selvaraj M., Choe Y. (2010). Well ordered two-dimensional SnSBA-15 catalysts synthesized with high levels of tetrahedral tin for highly efficient and clean synthesis of nopol. Appl. Catal. A Gen. 373, 186–191 10.1016/j.apcata.2009.11.014 DOI
Selvaraj M., Sinha P. K. (2010). Highly selective and clean synthesis of nopol over well-ordered mesoporous tin silicate catalysts. New J. Chem. 34, 1921–1929 10.1039/c0nj00080a DOI
Shamzhy M. V., Shvets O. V., Opanasenko M. V., Kurfiřtova L., Kubička D., Čejka J. (2013). Extra-large-pore zeolites with UTL topology: control of the catalytic activity by variation in the nature of the active sites. Chem. Cat. Chem. 5, 1891–1898
Shamzhy M. V., Shvets O. V., Opanasenko M. V., Yaremov P. S., Sarkisyan L. G., Chlubná P., et al. (2012). Synthesis of isomorphously substituted extra-large pore UTL zeolites. J. Mater. Chem. 22, 15793–15803 10.1039/c2jm31725g DOI
Shanthan R. P., Venkataratnam R. V. (1991). Zinc chloride as a new catalyst for Knoevenagel condensation. Tetrahedron Lett. 32, 5821–5822 10.1016/S0040-4039(00)93564-0 DOI
Shvets O. V., Kasian N., Zukal A., Pinkas J., Čejka J. (2010). The role of template structure and synergism between inorganic and organic structure directing agents in the synthesis of UTL zeolite. Chem. Mater. 22, 3482–3495 10.1021/cm1006108 DOI
Shvets O. V., Shamzhy M. V., Yaremov P. S., Musilová Z., Procházková D., Čejka J. (2011). Isomorphous introduction of boron in germanosilicate zeolites with UTL topology. Chem. Mater. 23, 2573–2585 10.1021/cm200105f DOI
Shvets O. V., Zukal A., Kasian N., Žilková N., Čejka J. (2008). The role of crystallization parameters for the synthesis of germanosilicate with UTL Topology. Chem. Eur. J. 14, 10134–10140 10.1002/chem.200800416 PubMed DOI
Sudha S., Venkatachalam K., Vishnu Priya S., Herbert Mabel J., Palanichamy M., Murugesan V. (2008). Single step synthesis of coumarin derivatives over Al-MCM-41 and its supported catalysts under solvent-free condition. J. Mol. Catal. A. 291, 22–29 10.1016/j.molcata.2008.04.021 DOI
Tietze L. F., Beifuss U. (1991). The Knoevenagel reaction, in Comprehensive Organic Synthesis, eds Trost B. M., Fleming I. (Oxford: Pergamon Press; ), 341–394
Torviso R., Mansilla D., Belizán A., Alesso E., Moltrasio G., Vázquez P., et al. (2008). Catalytic activity of Keggin heteropolycompounds in the Pechmann reaction. Appl. Catal. A 339, 53–60 10.1016/j.apcata.2008.01.020 DOI
Tyagi B., Mishra M. K., Jasra R. V. (2007). Synthesis of 7-substituted 4-methyl coumarins by Pechmann reaction using nano-crystalline sulfated-zirconia. J. Mol. Catal. A 276, 47–56 10.1016/j.molcata.2007.06.003 DOI
Weinmann I. (1997). History of the development and applications of coumarin and coumarin-related compounds, in Coumarins: Biology, Applications and Mode of Action, eds Kennedy R. O., Thornes R. D. (Chichester: Wiley Press; ), 1–22
Williams J. T., Bahia P. S., Snaith J. S. (2002). Synthesis of 3, 4-disubstituted piperidines by carbonyl ene and prins cyclizations: a switch in diastereoselectivity between Lewis and Bronsted acid catalysts. Org. Lett. 4, 3727–3730 10.1021/ol0266929 PubMed DOI
Woods L. L., Sapp J. (1962). A new one-step synthesis of substituted coumarins. J. Org. Chem. 27, 3703–3705 10.1021/jo01057a519 DOI
Yadav J. S., Reddy B. V. S., Bhaishya G. (2003). InBr3-[bmim]PF6: a novel and recyclable catalytic system for the synthesis of 1, 3-dioxane derivatives. Green Chem. 5, 264–266 10.1039/b212044p DOI
Yadav M. K., Jasra R. V. (2006). Synthesis of nopol from beta-pinene using ZnCl2 impregnated Indian Montmorillonite. Catal. Commun. 7, 889–895 10.1016/j.catcom.2006.04.002 DOI