The histamine H4 receptor is a potent inhibitor of adhesion-dependent degranulation in human neutrophils
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24799603
PubMed Central
PMC5395935
DOI
10.1189/jlb.2ab0813-432rr
PII: jlb.2AB0813-432RR
Knihovny.cz E-resources
- Keywords
- inflammation, innate immunity, signaling,
- MeSH
- Leukemia, Promyelocytic, Acute pathology MeSH
- Lymphocyte Function-Associated Antigen-1 chemistry MeSH
- Cell Adhesion drug effects physiology MeSH
- Cytochalasin B pharmacology MeSH
- Cell Degranulation * drug effects MeSH
- Fibrinogen MeSH
- Histamine pharmacology MeSH
- Receptors, Histamine H4 MeSH
- Indoles pharmacology MeSH
- Protein Conformation drug effects MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Macrophage-1 Antigen physiology MeSH
- MAP Kinase Signaling System drug effects MeSH
- RNA, Messenger biosynthesis genetics MeSH
- p38 Mitogen-Activated Protein Kinases physiology MeSH
- N-Formylmethionine Leucyl-Phenylalanine pharmacology MeSH
- Cell Line, Tumor MeSH
- Neutrophils drug effects physiology MeSH
- Oximes pharmacology MeSH
- Piperazines pharmacology MeSH
- Piperidines pharmacology MeSH
- Pyridines pharmacology MeSH
- Receptors, Histamine physiology MeSH
- Receptors, G-Protein-Coupled agonists antagonists & inhibitors physiology MeSH
- Cell Shape drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 1-((5-chloro-1H-indol-2-yl)carbonyl)-4-methylpiperazine MeSH Browser
- Lymphocyte Function-Associated Antigen-1 MeSH
- Cytochalasin B MeSH
- Fibrinogen MeSH
- Histamine MeSH
- Receptors, Histamine H4 MeSH
- HRH4 protein, human MeSH Browser
- Indoles MeSH
- JNJ28307474 MeSH Browser
- JNJ28610244 MeSH Browser
- Macrophage-1 Antigen MeSH
- RNA, Messenger MeSH
- p38 Mitogen-Activated Protein Kinases MeSH
- N-Formylmethionine Leucyl-Phenylalanine MeSH
- Oximes MeSH
- Piperazines MeSH
- Piperidines MeSH
- Pyridines MeSH
- Receptors, Histamine MeSH
- Receptors, G-Protein-Coupled MeSH
The histamine H4 receptor regulates the inflammatory response. However, it is not known whether this receptor has a functional role in human neutrophils. We found that fMLP (1 μM), but not histamine (0.1-1 μM), induced Mac-1-dependent adhesion, polarization, and degranulation (release of lactoferrin). A pretreatment of neutrophils with histamine (0.001-1 μM) or JNJ 28610244 (0.1-10 μM), a specific H4 receptor agonist, led to inhibition of degranulation. Total inhibition of degranulation was obtained with 0.1 μM histamine and 10 μM JNJ 28610244. Furthermore, such inhibition by histamine of degranulation was reversed by JNJ 7777120 and JNJ 28307474, two selective H4 receptor antagonists. However, neither histamine nor the H4 receptor agonist JNJ 28610244 prevented fMLP-induced, Mac-1-dependent adhesion, indicating that the H4 receptor may block signals emanating from Mac-1-controlling degranulation. Likewise, engagement of the H4 receptor by the selective agonist JNJ 28610244 blocked Mac-1-dependent activation of p38 MAPK, the kinase that controls neutrophil degranulation. We also show expression of the H4 receptor at the mRNA level in ultrapure human neutrophils and myeloid leukemia PLB-985 cells. We concluded that engagement of this receptor by selective H4 receptor agonists may represent a good, therapeutic approach to accelerate resolution of inflammation.
Cancer Sciences Unit University of Southampton United Kingdom;
Centre for Infection and Immunity Queen's University of Belfast Northern Ireland United Kingdom;
Janssen Research and Development San Diego California USA
School of Biological and Biomedical Sciences Durham University United Kingdom; and
See more in PubMed
Ley K., Laudanna C., Cybulsky M. I., Nourshargh S. (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689. PubMed
Diamond M. S., Springer T. A. (1993) A subpopulation of Mac-1 (Cd11b/Cd18) molecules mediates neutrophil adhesion to ICAM-1 and fibrinogen. J. Cell Biol. 120, 545–556. PubMed PMC
Sengeløv H., Kjeldsen L., Diamond M. S., Springer T. A., Børregaard N. (1993) Subcellular localization and dynamics of Mac-1 (α M β 2) in human neutrophils. J. Clin. Invest. 92, 1467–1476. PubMed PMC
Sheppard F. R., Kelher M. R., Moore E.E., Mclaughlin N. J., Baerjee A., Silliman C. (2005) Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J. Leukoc. Biol. 78, 1025–1042. PubMed
Mócsai A., Ligeti E., Lowell C. A., Berton G. (1999) Adhesion-dependent degranulation of neutrophils requires the Src family kinases Fgr and Hck. J. Immunol. 162, 1120–1126. PubMed
Mócsai A., Jakus Z., Vantus T., Berton G., Lowell C. A., Ligeti E. (2000) Kinase pathways in chemoattractant-induced degranulation of neutrophils: the role of p38 mitogen-activated protein kinase activated by Src family kinases. J. Immunol. 164, 4321–4331. PubMed
Thurmond R. L., Gelfand E., Dunford P. (2008) The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat. Rev. 7, 41–53. PubMed
Jones B. L., Kearns G. L. (2011) Histamine: new thoughts about a familiar mediator. Clin. Pharmacol. Ther. 89,189–197. PubMed
De Esch I. J., Thurmond R. L., Jongejan A., Leurs R. (2005) The histamine H4 receptor as a new therapeutic target for inflammation. Trends Pharmacol. Sci. 26, 462–469. PubMed
Ling P., Ngo K., Nguyen S., Thurmond R. L., Edwards J. P., Karlsson L., Fung-Leung W-P. (2004) Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation. Br. J. Pharmacol. 142, 161–171. PubMed PMC
Desai P., Thurmond R. L. (2011) Histamine H4 receptor activation enhances LPS-induced IL-6 production in mast cells via ERK and PI3K activation. Eur. J. Immunol. 41, 1764–1773. PubMed
Leite-De-Moraes M. C., Diem S., Michel M.-L., Ohtsu H., Thurmond R. L., Schmeider E., Dy M. (2009) Histamine receptor H4 activation positively regulates in vivo IL-4 and IFN-γ production by invariant NKT cells. J. Immunol. 182, 1233–1236. PubMed
Wescott S., Kaliner M. (1983) Histamine H-1 binding site on human polymorphonuclear leukocytes. Inflammation 7, 291–300. PubMed
Petty R., Francis J. W. (1986) Polymorphonuclear leukocyte histamine receptors; occurrence in cell surface clusters and their redistribution during locomotion. Proc. Natl. Acad. Sci. USA 83, 4332–4335. PubMed PMC
Seligmann B. E., Fletcher M. P., Gallin J. I. (1983) Histamine modulation of human neutrophil oxidative metabolism, locomotion, degranulation, and membrane potential changes. J. Biol. Chem. 130, 1902–1909. PubMed
Busse W. W., Sosman J. (1976) Histamine inhibition of neutrophil lysosomal enzyme release: an H2 histamine receptor response. Science 194, 737–738. PubMed
Flamand N., Plante H., Picard S., Laviolette M., Borgeat P. (2004) Histamine-induced inhibition of leukotriene biosynthesis in human neutrophils: involvement of the H2 receptor and cAMP. Br. J. Pharmacol. 141, 552–561. PubMed PMC
Oda T., Morikawa N., Saito Y., Masuho Y., Matsumoto S-I. (2000) Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J. Biol. Chem. 275, 36781–36786. PubMed
Van Rijn R. M., Van Marle A., Chazot P. L., Langemeijer E., Qin Y., Shenton F. C., Lim H. D., Zuiderveld O. P., Sansuk K., Dy M., Smit M., Tensen C. P., Bakker R. A., Leurs R. (2008) Cloning and characterization of dominant negative splice variants of the human histamine H4 receptor. Biochem. J. 414, 121–131. PubMed
Jablonowski J. A., Grice C. A., Chai W., Dvorak C. A., Venable J. D., Kwok A. K., Ly K. S., Wei J., Baker S. M., Desai P. J., Jiang W., Wilson S. J., Thurmond R. L., Karlsson L., Edwards J. P., Lovenberg T. W., Carruthers N. I. (2003) The first potent and selective non-imidazole human histamine H4 receptor antagonists. J. Med. Chem. 46, 3957–3960. PubMed
Cowden J. M., Zhang M., Dunford P. J., Thurmond R. L. (2010) The histamine H4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation. J. Invest. Dermatol. 130, 1023–1033. PubMed
Yu F., Wolin R. L., Wei J., Desai P. J., Mcgovern P. M., Dunford P. J., Karlsson L., Thurmond R. L. (2010) Pharmacological characterization of oxime agonists of the histamine H4 receptor. J. Receptor Ligand Channel Res. 3, 37–49.
Deevi R. K., Koney-Dash M., Kissenpfennig A., Johnston J. A., Schuh K., Walter U., Dib K. (2010) Vasodilator-stimulated phospho-protein (VASP) regulates inside-out signaling of β2 integrins in neutrophils. J. Immunol. 184, 6575–6584. PubMed
Koney-Dash M., Deevi R. K., Mcfarlane C., Dib K. (2011) Exchange protein directly activated by cAMP1 (EPAC1) is expressed in human neutrophils and mediates cAMP-dependent activation of the monomeric GTPase Rap1. J. Leukoc. Biol. 90, 741–749. PubMed
Ikawa Y., Suzuki M., Shiono S., Ohki E., Moriya H., Negishi E., Ueno K. (2005) Histamine H4 receptor expression in human synovial cells obtained from patients suffering from rheumatoid arthritis. Biol. Pharm. Bull. 28, 2016–2018. PubMed
Dorward D. A., Lucas C. D., Alessandri A. L., Marwick J. A., Rossi F., Dransfield I., Haslett C., Dhaliwal K., Rossi A. G. (2013) Autofluorescence-based sorting: rapid and nonperturbing isolation of ultrapure neutrophils to determine cytokine production. J. Leukoc. Biol. 94, 193–201. PubMed PMC
Gschwandtner M., Rossbach K., Dijkstra D., Baumer W., Kietzmann M., Stark H., Werfel T., Gutzmer R. (2010) Murine and human Langerhans cells express a functional histamine H4 receptor: modulation of cell migration and function. Exp. Allergy Immunol. 65, 840–849. PubMed
Dransfield I., Hogg N. (1989) Regulated expression of Mg2+ binding epitope on leukocyte integrin α subunit. EMBO J. 8, 3759–3765. PubMed PMC
Berton G., Laudanna C., Sorio C., Rossi F. (1989) Generation of signals activating neutrophil functions by leukocyte integrins: LFA-1 and gp150/95, but not CR3, are able to stimulate the respiratory burst of human neutrophils. J. Cell Biol. 116, 1007–1017. PubMed PMC
Nathan C. F. (1987) Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J. Clin. Invest. 80, 1550–1560. PubMed PMC
Meyer Zu Heringdorf D., Liedel K., Kaldenberg-Stasch S., Michel M. C., Jakobs K. H., Wieland T. (1996) Translocation of microfilament-associated inhibitory guanine-nucleotide-binding proteins to the plasma membrane in myeloid differentiated human leukemia (HL-60) cells. Eur. J. Biochem. 235, 670–676. PubMed
Tomhave E. D., Richardson R. M., Didsbury J. R., Menard L., Snyderman R., Ali H. (1994) Cross-desensitization of receptors for peptide chemoattractants. Characterization of a new form of leukocyte regulation. J. Immunol. 153, 3267–3275. PubMed
Zaslaver A., Feniger-Barish R., Ben-Baruch A. (2001) Actin filaments are involved in the regulation of trafficking of two closely related chemokine receptors, CXCR1 and CXCR2. J. Immunol. 166, 1272–1284. PubMed
Thurmond R. L., Desai P. J., Dunford P. J., Fung-Leung W-P., Hofstra C. L., Jiang W., Nguyen S., Riley J. P., Sun S., Williams K. N., Edwards J. P., Karlsson L. (2004) A potent and selective histamine H4 receptor antagonist with anti-inflammatory properties. J. Pharmacol. Exp. Therapeutics 309, 404–413. PubMed
Francis J. W., Todd R. F., Boxer L. A., Petty H. R. (1991) Histamine inhibits cell spreading and C3bi receptor clustering and diminishes hydrogen peroxide production by adherent human neutrophils. J. Cell. Physiol. 147, 128–137. PubMed
Jenei V., Deevi R. K., Adams C. A., Axelsson L., Hirst D. G., Andersson T., Dib K. (2006) Nitric oxide produced in response to engagement of β2 integrins on human neutrophils activates the monomeric GTPases Rap1 and Rap2 and promotes adhesion. J. Biol. Chem. 281, 35008–35020. PubMed
Pivot-Pajot C., Chouinard F. C., Amine El Azreq M., Harbour D., Bourgoin S. G. (2010) Characterization of degranulation and phagocytic capacity of a human neutrophilic cellular model, PLB-985 cells. Immunobiology 215, 38–52. PubMed
Smuda C., Wechsler J. B., Bryce P. J. (2011) TLR-induced activation of neutrophils promotes histamine production via a PI3 kinase-dependent mechanism. Immunol. Lett. 141, 102–108. PubMed PMC