Mutation frequency dynamics in HPRT locus in culture-adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts

. 2014 Oct 15 ; 23 (20) : 2443-54. [epub] 20140725

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24836366

The genomic destabilization associated with the adaptation of human embryonic stem cells (hESCs) to culture conditions or the reprogramming of induced pluripotent stem cells (iPSCs) increases the risk of tumorigenesis upon the clinical use of these cells and decreases their value as a model for cell biology studies. Base excision repair (BER), a major genomic integrity maintenance mechanism, has been shown to fail during hESC adaptation. Here, we show that the increase in the mutation frequency (MF) caused by the inhibition of BER was similar to that caused by the hESC adaptation process. The increase in MF reflected the failure of DNA maintenance mechanisms and the subsequent increase in MF rather than being due solely to the accumulation of mutants over a prolonged period, as was previously suggested. The increase in the ionizing-radiation-induced MF in adapted hESCs exceeded the induced MF in nonadapted hESCs and differentiated cells. Unlike hESCs, the overall DNA maintenance in iPSCs, which was reflected by the MF, was similar to that in differentiated cells regardless of the time spent in culture and despite the upregulation of several genes responsible for genome maintenance during the reprogramming process. Taken together, our results suggest that the changes in BER activity during the long-term cultivation of hESCs increase the mutagenic burden, whereas neither reprogramming nor long-term propagation in culture changes the MF in iPSCs.

Zobrazit více v PubMed

Draper JS, Moore HD, Ruban LN, Gokhale PJ. and Andrews PW. (2004). Culture and characterization of human embryonic stem cells. Stem Cells Dev 13:325–336 PubMed

Imreh MP, Gertow K, Cedervall J, Unger C, Holmberg K, Szöke K, Csöregh L, Fried G, Dilber S, Blennow E. and Ährlund-Richter L. (2006). In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J Cell Biochem 99:508–516 PubMed

Spits C, Mateizel I, Geens M, Mertzanidou A, Staessen C, Vandeskelde Y, Van der Elst J, Liebaers I. and Sermon K. (2008). Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol 26:1361–1363 PubMed

Baker DEC, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H. and Andrews PW. (2007). Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25:207–215 PubMed

Harrison NJ, Baker D. and Andrews PW. (2007). Culture adaptation of embryonic stem cells echoes germ cell malignancy. Int J Androl 30:275–281; discussion 281. PubMed

Lefort N, Feyeux M, Bas C, Féraud O, Bennaceur-Griscelli A, Tachdjian G, Peschanski M. and Perrier AL. (2008). Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol 26:1364–1366 PubMed

Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, Jones KL, Dalton S. and Stice SL. (2005). Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol 23:19–20 PubMed

Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Baker D, Munoz MB, et al. (2011). Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29:1132–1144 PubMed PMC

Herszfeld D, Wolvetang E, Langton-Bunker E, Chung T-L, Filipczyk AA, Houssami S, Jamshidi P, Koh K, Laslett AL, et al. (2006). CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat Biotechnol 24:351–357 PubMed

Enver T. (2005). Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 14:3129–3140 PubMed

Blum B. and Benvenisty N. (2009). The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle Georget Tex 8:3822–3830 PubMed

Närvä E, Autio R, Rahkonen N, Kong L, Harrison N, Kitsberg D, Borghese L, Itskovitz-Eldor J, Rasool O, et al. (2010). High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol 28:371–377 PubMed

Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Närvä E, Ng S, Sourour M, Hämäläinen R, et al. (2011). Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62 PubMed

Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, et al. (2011). Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106–118 PubMed PMC

Ji J, Ng SH, Sharma V, Neculai D, Hussein S, Sam M, Trinh Q, Church GM, Mcpherson JD, Nagy A. and Batada NN. (2012). Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cells 30:435–440 PubMed

Pasi CE, Dereli-Öz A, Negrini S, Friedli M, Fragola G, Lombardo A, Van Houwe G, Naldini L, Casola S, et al. (2011). Genomic instability in induced stem cells. Cell Death Differ 18:745–753 PubMed PMC

Mayshar Y, Ben-David U, Lavon N, Biancotti J-C, Yakir B, Clark AT, Plath K, Lowry WE. and Benvenisty N. (2010). Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–531 PubMed

Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P. and Draper JS. (2005). Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans 33:1526–1530 PubMed

Ayres FM, Cruz da AD, Steele P. and Glickman BW. (2006). Low doses of gamma ionizing radiation increase hprt mutant frequencies of TK6 cells without triggering the mutator phenotype pathway. Genet Mol Biol 29:558–561

Li I-C. and Chu EH. (1987). Evaluation of methods for the estimation of mutation rates in cultured mammalian cell populations. Mutat Res Lett 190:281–287 PubMed

Green MH, O'Neill JP. and Cole J. (1995). Suggestions concerning the relationship between mutant frequency and mutation rate at the hprt locus in human peripheral T-lymphocytes. Mutat Res 334:323–339 PubMed

Cervantes RB, Stringer JR, Shao C, Tischfield JA. and Stambrook PJ. (2002). Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci U S A 99:3586–3590 PubMed PMC

Tsuda H, Sasaki K. and Tanaka N. (2005). Establishment of hypoxanthine phosphoribosyl-transferase (HPRT)-locus mutation assay system in mouse ES cells. Alternatives to Animal Testing and Experimentation 11:118–128

Stambrook PJ, Shao C, Stockelman M, Boivin G, Engle SJ. and Tischfield JA. (1996). APRT: a versatile in vivo resident reporter of local mutation and loss of heterozygosity. Environ Mol Mutagen 28:471–482 PubMed

Hong Y, Cervantes RB, Tichy E, Tischfield JA. and Stambrook PJ. (2007). Protecting genomic integrity in somatic cells and embryonic stem cells. Mutat Res 614:48–55 PubMed

Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, et al. (2007). Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25:803–816 PubMed

Lund RJ, Närvä E. and Lahesmaa R. (2012). Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 13:732–744 PubMed

Dvorak P, Dvorakova D, Koskova S, Vodinska M, Najvirtova M, Krekac D. and Hampl A. (2005). Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 23:1200–1211 PubMed

Kunova M, Matulka K, Eiselleova L, Salykin A, Kubikova I, Kyrylenko S, Hampl A. and Dvorak P. (2013). Adaptation to robust monolayer expansion produces human pluripotent stem cells with improved viability. Stem Cells Transl Med 2:246–254 PubMed PMC

Krutá M, Bálek L, Hejnová R, Dobšáková Z, Eiselleová L, Matulka K, Bárta T, Fojtík P, Fajkus J, et al. (2013). Decrease in abundance of apurinic/apyrimidinic endonuclease causes failure of base excision repair in culture-adapted human embryonic stem cells. Stem Cells 31:693–702 PubMed

Gruss HJ, Boiani N, Williams DE, Armitage RJ, Smith CA. and Goodwin RG. (1994). Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 83:2045–2056 PubMed

Bonatti S, Di Leonardo A, Mariani L, Randazzo R. and Sciandrello G. (1982). Selection in HAT medium is not a reliable method for the study of reversion from 6-thioguanine resistance to sensitivity. Mutat Res 104:377–381 PubMed

Barta T, Dolezalova D, Holubcova Z. and Hampl A. (2013). Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture. Exp Biol Med (Maywood) 238:271–275 PubMed

Zou G-M, Luo M-H, Reed A, Kelley MR. and Yoder MC. (2007). Ape1 regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain. Blood 109:1917–1922 PubMed

Leshchiner I, Alexa K, Kelsey P, Adzhubei I, Austin-Tse CA, Cooney JD, Anderson H, King MJ, Stottmann RW, et al. (2012). Mutation mapping and identification by whole-genome sequencing. Genome Res 22:1541–1548 PubMed PMC

Hoffman LM, Hall L, Batten JL, Young H, Pardasani D, Baetge EE, Lawrence J. and Carpenter MK. (2005). X-Inactivation status varies in human embryonic stem cell lines. Stem Cells 23:1468–1478 PubMed

Sustáčková G, Legartová S, Kozubek S, Stixová L, Pacherník J. and Bártová E. (2012). Differentiation-independent fluctuation of pluripotency-related transcription factors and other epigenetic markers in embryonic stem cell colonies. Stem Cells Dev 21:710–720 PubMed PMC

Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, et al. (2010). Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7:329–342 PubMed PMC

Hall LL, Byron M, Butler J, Becker KA, Nelson A, Amit M, Itskovitz-Eldor J, Stein J, Stein G, Ware C. and Lawrence JB. (2008). X-inactivation reveals epigenetic anomalies in most hESC but identifies sublines that initiate as expected. J Cell Physiol 216:445–452 PubMed PMC

Shen Y, Matsuno Y, Fouse SD, Rao N, Root S, Xu R, Pellegrini M, Riggs AD. and Fan G. (2008). X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations. Proc Natl Acad Sci U S A 105:4709–4714 PubMed PMC

Silva SS, Rowntree RK, Mekhoubad S. and Lee JT. (2008). X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc Natl Acad Sci U S A 105:4820–4825 PubMed PMC

Liu W, Yin Y, Jiang Y, Kou C, Luo Y, Huang S, Zheng Y, Li S, Li Q, et al. (2011). Genetic and epigenetic X-chromosome variations in a parthenogenetic human embryonic stem cell line. J Assist Reprod Genet 28:303–313 PubMed PMC

Amenduni M, De Filippis R, Cheung AYL, Disciglio V, Epistolato MC, Ariani F, Mari F, Mencarelli MA, Hayek Y, et al. (2011). iPS cells to model CDKL5-related disorders. Eur J Hum Genet 19:1246–1255 PubMed PMC

Ananiev G, Williams EC, Li H. and Chang Q. (2011). Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One 6:e25255. PubMed PMC

Pomp O, Dreesen O, Leong DFM, Meller-Pomp O, Tan TT, Zhou F. and Colman A. (2011). Unexpected X chromosome skewing during culture and reprogramming of human somatic cells can be alleviated by exogenous telomerase. Cell Stem Cell 9:156–165 PubMed

Cheung AYL, Horvath LM, Carrel L. and Ellis J. (2012). X-chromosome inactivation in rett syndrome human induced pluripotent stem cells. Front Psychiatry 3:24. PubMed PMC

Mekhoubad S, Bock C, de Boer AS, Kiskinis E, Meissner A. and Eggan K. (2012). Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10:595–609 PubMed PMC

Kim D, Kim C-H, Moon J-I, Chung Y-G, Chang M-Y, Han B-S, Ko S, Yang E, Cha KY, Lanza R. and Kim K-S. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476 PubMed PMC

Marchetto MCN, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH. and Muotri AR. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–539 PubMed PMC

Olariu V, Harrison NJ, Coca D, Gokhale PJ, Baker D, Billings S, Kadirkamanathan V. and Andrews PW. (2010). Modeling the evolution of culture-adapted human embryonic stem cells. Stem Cell Res 4:50–56 PubMed

Tompkins JD, Hall C, Chen VC, Li AX, Wu X, Hsu D, Couture LA. and Riggs AD. (2012). Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc Natl Acad Sci U S A 109:12544–12549 PubMed PMC

Chen Y, Guo L, Chen J, Zhao X, Zhou W, Zhang C, Wang J, Jin L, Pei D. and Zhang F. (2014). Genome-wide CNV analysis in mouse induced pluripotent stem cells reveals dosage effect of pluripotent factors on genome integrity. BMC Genomics 15:79. PubMed PMC

Mallon BS, Hamilton RS, Kozhich OA, Johnson KR, Fann YC, Rao MS. and Robey PG. (2014). Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Res 12:376–386 PubMed PMC

Mallon BS, Chenoweth JG, Johnson KR, Hamilton RS, Tesar PJ, Yavatkar AS, Tyson LJ, Park K, Chen KG, Fann YC. and McKay RDG. (2013). StemCellDB: the human pluripotent stem cell database at the National Institutes of Health. Stem Cell Res 10:57–66 PubMed PMC

Gore A, Li Z, Fung H-L, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, et al. (2011). Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67 PubMed PMC

Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O'Malley R, Castanon R, et al. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73 PubMed PMC

Marchetto MCN, Yeo GW, Kainohana O, Marsala M, Gage FH. and Muotri AR. (2009). Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One 4:e7076. PubMed PMC

Hussein SMI, Elbaz J. and Nagy AA. (2013). Genome damage in induced pluripotent stem cells: assessing the mechanisms and their consequences. BioEssays 35:152–162 PubMed

Zhang M, Yang C, Liu H. and Sun Y. (2013). Induced pluripotent stem cells are sensitive to DNA damage. Genomics Proteomics Bioinformatics 11:320–326 PubMed PMC

Bárta T, Vinarský V, Holubcová Z, Doležalová D, Verner J, Pospíšilová Š, Dvořák P. and Hampl A. (2010). Human embryonic stem cells are capable of executing G1/S checkpoint activation. Stem Cells 28:1143–1152 PubMed

Tichy ED, Liang L, Deng L, Tischfield J, Schwemberger S, Babcock G. and Stambrook PJ. (2011). Mismatch and base excision repair proficiency in murine embryonic stem cells. DNA Repair 10:445–451 PubMed PMC

Momcilović O, Choi S, Varum S, Bakkenist C, Schatten G. and Navara C. (2009). Ionizing radiation induces ataxia telangiectasia mutated-dependent checkpoint signaling and G2 but not G1 cell cycle arrest in pluripotent human embryonic stem cells. Stem Cells 27:1822–1835 PubMed PMC

Serrano L, Liang L, Chang Y, Deng L, Maulion C, Nguyen S. and Tischfield JA. (2010). Homologous recombination conserves DNA sequence integrity throughout the cell cycle in embryonic stem cells. Stem Cells Dev 20:363–374 PubMed PMC

Bañuelos CA, Banáth JP, MacPhail SH, Zhao J, Eaves CA, O'Connor MD, Lansdorp PM. and Olive PL. (2008). Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks. DNA Repair 7:1471–1483 PubMed

Tichy ED, Pillai R, Deng L, Liang L, Tischfield J, Schwemberger SJ, Babcock GF. and Stambrook PJ. (2010). Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks. Stem Cells Dev 19:1699–1711 PubMed PMC

Adams BR, Golding SE, Rao RR. and Valerie K. (2010). Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants. PLoS One 5:e10001. PubMed PMC

Luo LZ, Gopalakrishna-Pillai S, Nay SL, Park S-W, Bates SE, Zeng X, Iverson LE. and O'Connor TR. (2012). DNA repair in human pluripotent stem cells is distinct from that in non-pluripotent human cells. PLoS One 7:e30541. PubMed PMC

Hyka-Nouspikel N, Desmarais J, Gokhale PJ, Jones M, Meuth M, Andrews PW. and Nouspikel T. (2012). Deficient DNA damage response and cell cycle checkpoints lead to accumulation of point mutations in human embryonic stem cells. Stem Cells 30:1901–1910 PubMed

Momcilovic O, Knobloch L, Fornsaglio J, Varum S, Easley C. and Schatten G. (2010). DNA damage responses in human induced pluripotent stem cells and embryonic stem cells. PLoS One 5:e13410. PubMed PMC

Ha GH, Kim HS, Lee CG, Park HY, Kim EJ, Shin HJ, Lee JC, Lee KW. and Lee CW. (2008). Mitotic catastrophe is the predominant response to histone acetyltransferase depletion. Cell Death Differ 16:483–497 PubMed

Liao S, Matsumoto Y. and Yan H. (2007). Biochemical reconstitution of abasic DNA lesion replication in Xenopus extracts. Nucleic Acids Res 35:5422–5429 PubMed PMC

Iraqui I, Chekkal Y, Jmari N, Pietrobon V, Fréon K, Costes A. and Lambert SAE. (2012). Recovery of arrested replication forks by homologous recombination is error-prone. PLoS Genet 8:e1002976. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...