Evaluation of dental morphometrics during the orthodontic treatment
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu hodnotící studie, časopisecké články
PubMed
24893983
PubMed Central
PMC4058703
DOI
10.1186/1475-925x-13-68
PII: 1475-925X-13-68
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- ortodoncie metody MeSH
- počítačová simulace * MeSH
- regresní analýza MeSH
- sádrové obvazy MeSH
- software MeSH
- zuby anatomie a histologie chirurgie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
BACKGROUND: Diagnostic orthodontic and prosthetic procedures commence with an initial examination, during which a number of individual findings on occlusion or malocclusion are clarified. Nowadays we try to replace standard plaster casts by scanned objects and digital models. METHOD: Geometrically calibrated images aid in the comparison of several different steps of the treatment and show the variation of selected features belonging to individual biomedical objects. The methods used are based on geometric morphometrics, making a new approach to the evaluation of the variability of features. The study presents two different methods of measurement and shows their accuracy and reliability. RESULTS: The experimental part of the present paper is devoted to the analysis of the dental arch objects of 24 patients before and after the treatment using the distances between the canines and premolars as the features important for diagnostic purposes. Our work proved the advantage of measuring digitalized orthodontic models over manual measuring of plaster casts, with statistically significant results and accuracy sufficient for dental practice. CONCLUSION: A new method of computer imaging and measurements of a dental stone cast provides information with the precision required for orthodontic treatment. The results obtained point to the reduction in the variance of the distances between the premolars and canines during the treatment, with a regression coefficient RC=0.7 and confidence intervals close enough for dental practice. The ratio of these distances pointed to the nearly constant value of this measure close to 0.84 for the given set of 24 individuals.
Zobrazit více v PubMed
Lewis A, Roche AF, Wagner B. Pubertal spurts in cranial base and mandible: comparisons within individuals. Angle Orthod. 1985;55:17–30. PubMed
Hagg U, Pancherz H, Taranger J. In: Craniofacial Growth During Adolescence. Craniofacial Growth Series, Volume 20. Carlson DS, Ribbens KA, editor. Ann Arbor, MI: Center for Human Growth and Development, University of Michigan; 1987. Pubertal growth and orthodontic treatment; pp. 87–115.
Opheij DG, Opdebeeck H, van Steenberghe D, Quirynen M. Age as compromising factor for implant insertion. Periodontol 2000. 2003;33:172–184. doi: 10.1046/j.0906-6713.2003.03314.x. PubMed DOI
Thilander B, Odman J, Jemt T. Single implants in the upper incisor region and their relationship to the adjacent teeth. an 8-year follow-up study. Clin Oral Implants Res. 1999;10:346–355. doi: 10.1034/j.1600-0501.1999.100502.x. PubMed DOI
Dostalova T, Racek J, Lozekova E, Rerchova M. Composite veneers, crowns, and inlay bridges after orthodontic therapy - a three-year prospective study. Gen Dent. 2003;51:129–132. PubMed
Conti MF, Filho MV, Vedovello SAS, Valdrighi HC, Kuramae M. Longitudinal evaluation of dental arches individualized by the WALA ridge method. J Orthod (Dent Press) 2011;16(2):65–74. doi: 10.1590/S2176-94512011000200009. DOI
Rheudea B, Sadowsky P. L, Ferrierac A, Jacobson A. An evaluation of the use of digital study models in orthodontic diagnosis and treatment planning. Angle Orthod. 2005;75(3):300–304. PubMed
Ghislanzoni LTH, Lineberger M, Cevidanes LHS, Mapelli A, Sforza C, McNamara JA. Evaluation of tip and torque on virtual study models: a validation study. Prog Orthod. 2013;14(19):1–6. PubMed PMC
Peluso MJ, Josell SD, Levine SW, Lorei BJ. Digital models: an introduction. Elsevier: Semin Orthod. 2004;10(3):226–238. doi: 10.1053/j.sodo.2004.05.007. DOI
Santoro M, Galkin S, Teredesai M, Nicolay OF, Cangialosi TJ. Comparison of measurements made on digital and plaster models. Am J Orthod Dentofacial Orthop. 2003;124(1):101–105. doi: 10.1016/S0889-5406(03)00152-5. PubMed DOI
Costalos PA, Sarraf K, Cangialosi TJ, Efstratiadis S. Evaluation of the accuracy of digital model analysis for the American board of rthodontics objective grading system for dental casts. Am J Orthod Dentofacial Orthop. 2005;128(5):624–628. doi: 10.1016/j.ajodo.2004.08.017. PubMed DOI
Grauer D, Proffit WR. Accuracy in tooth positioning with a fully customized lingual orthodontic appliance. Am J Orthod Dentofacial Orthop. 2011;140(2):433–444. PubMed
Hildebrand JC, Palomo JM, Palomo L, Sivik M, Hans M. Evaluation of a software program for applying the American board of orthodontics objective grading system to digital casts. Am J Orthod Dentofacial Orthop. 2008;133(2):283–289. doi: 10.1016/j.ajodo.2006.03.035. PubMed DOI
Leifert MF, Leifert MM, Efstratiadis SS, Cangialosi TJ. Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofacial Orthop. 2009;136(1):16–1164. doi: 10.1016/j.ajodo.2009.03.002. PubMed DOI
Murad SM, Al-Mulla AA. Accuracy of measurements made on digital and study models (A comparative study) Malays Dental J (MDJ) 2010;7(1):71–82.
Tweed CH. The frankfort mandibular incisor angle in orthodontic diagnosis, treatment planning and prognosis. Angle Orthod. 1954;15:1212–1269. PubMed
MacConaill MA, Scher E. The ideal form of the human dental arcade, with some prosthetic application. Dent Rec. 1949;69:285–302. PubMed
Izard G. New method for the determination of the normal arch by the function of the face. Int J Orthod. 1927;13(7):582–595.
Adaskevicius R, Vasiliauskas A. Evaluation of dental arch form using 3D dental cast scanning technology. Electron Electrical Eng: Med Technol. 2009;93(5):99–102.
Adaskevicius R, Vasiliauskas A. Three-dimensional determination of dental occlusion and facial structures using soft tissue cephalometric analysis. Electron Electrical Eng: Syst Eng Comput Technol. 2012;121(5):93–96.
Grauer D. Three-dimensional applications in orthodontics. PhD thesis. University of North Carolina, Department of Oral Biology at the School of Dentistry; 2010.
Al-Khatib AR, Rajion ZA, Masudi SM, Hassan R, Townsen GC. Validity and reliability of tooth size and dental arch measurements a stereo photogrammetric study. Aust Orthod J. 2012;28(1):22–29. PubMed
El-Zanaty HM, El-Beialy AR, El-Ezz AMA, Attia KH, El-Bialy AR, Mostafa YA. Three-dimensional dental measurements: an alternative to plaster models. Am J Orthod Dentofacial Orthop. 2010;137(2):259–265. doi: 10.1016/j.ajodo.2008.04.030. PubMed DOI
Rosati R, DeMenezes M, Rossetti A, Sforza C, Ferrario V. F. Digital dental cast placement in 3-dimensional, full-face reconstruction: a technical evaluation. Am J Orthod Dentofacial Orthop. 2010;138(1):84–88. doi: 10.1016/j.ajodo.2009.10.035. PubMed DOI
Yamamoto K, Hayashi S, Nishikawa H, Nakamura S, Mikami T. Measurements of dental cast profile and three-dimensional tooth movement during orthodontic treatment. IEEE Trans on Biomed Eng. 1991;38(4):360–365. doi: 10.1109/10.133232. PubMed DOI
Kondo T, Ong SH, Foong KWC. Tooth segmentation of dental study models using range images. IEEE Trans on Med Imaging. 2004;23(3):350–362. doi: 10.1109/TMI.2004.824235. PubMed DOI
Chapuis J, Schramm A, Pappas I, Hallermann W, Schwenzer-Zimmerer K, Langlotz F, Caversaccio M. A new system for computer-aided preoperative planning and intraoperative navigation during corrective jaw surgery. IEEE Trans on Inf Technol Biomed. 2007;11(3):274–287. PubMed
Yaqi M, Zhongke L. 2010 International Conference on Image Analysis and Signal Processing (IASP) IEEE; 2010. Computer aided orthodontics treatment by virtual segmentation and adjustment; pp. 336–339.
Chang YB, Xia JJ, Gateno J, Xiong Z, Zhou X, Wong STC. An automatic and robust algorithm of reestablishment of digital dental occlusion. IEEE Trans on Med Imaging. 2010;29(9):1652–1663. PubMed PMC
Liang W, Yang L, Wang S, Wang B. 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI 2010) IEEE; 2010. Three-dimensional finite element analysis of maxillary first molar orthodontics; pp. 1287–1291.
Zelditch ML, Swiderski DL, Sheets HD, Fink WL. Geometric Morphometrics for Biologists. Elsevier, Academic Press, London; 2012.
Slice DE. Geometric morphometrics. Annu Rev Anthropol. 2007;36:261–281. doi: 10.1146/annurev.anthro.34.081804.120613. DOI
Dostalova T, Racek J, Tauferova E, Seydlova M, Smutny V, Bartonova M. Composite veneers, crowns, and inlay bridges after orthodontic therapy - a three-year prospective study. Methods Inf Med. 2006;45:191–194. PubMed
Stevens DR, Flores-Mir C, Nebbe B, Raboud DW, Heo G, Major PW. Validity, reliability, and reproducibility of plaster vs digital study models: comparison of peer assessment rating and Bolton analysis and their constituent measurements. Am J Orthod Dentofacial Orthop. 2006;129(6):794–803. doi: 10.1016/j.ajodo.2004.08.023. PubMed DOI
Quimby ML, Vig KW, Rshid RG, Firestone AR. The accuracy and reliability of measurements made on computer-based digital models. Angle Orthod. 2004;74(3):298–303. PubMed
Bootvong K, Liu Z, McGrath C, Hagg U, Wong RW, Bendeus M, Yeung S. Virtual model analysis as an alternative approach to plaster model analysis: reliability and validity. Eur J Orthod. 2010;32(5):589–595. doi: 10.1093/ejo/cjp159. PubMed DOI
Grafova L, Kasparova M, Kakawand S, Prochazka A, Dostalova T. Study of edge detection task in dental panoramic x-ray images. Dentomaxillofacial Radiol. 2012;42(7):0391/1–20120391/12. http://www.ncbi.nlm.nih.gov/pubmed/23640989. PubMed PMC
Grauer D, Cevidanes LH, Tyndall D, Styner MA, Flood PM, Proffit WR. In: Effective and efficient orthodontic tooth movement. Craniofacial Growth Series, Volume Monograph 48. McNamara JA, Hatch N, Kapila SD, editor. USA: Needham Press, Needham, MA 02492; 2011. Registration of Orthodontic Digital Models; pp. 377–392. PubMed PMC
Dugelay J. L, Baskurt A, Daoudi M. 3D Object Processing. Chichester, UK: John Wily & Sons; 2008.
Dvorak P, Prochazka A, Kasparova M, Dostalova T. Technical Computing. Humusoft, ICT Prague; 2011. Orthodontic Data Acquisition and Visualization; pp. 1–6.
Jacquet W, Nyssen E, Ibel G, Vannet B. V. On the augmented reproducibility in measurements on 3D orthodontic digital dental models and the definition of feature points. Aust Orthod J. 2013;29(1):28–33. PubMed
Freedman D. A. Statistical Models. New York: Cambridge University Press; 2005.
Gardiner WP. Statistics for the Biosciences. New York: Prentice Hall; 1997.
Goulden CH. Methods of Statistical Analysis. New York: Wiley; 1956.
Armitage P, Berry G, Matthews JNS. Statistical Methods in Medical Research. Oxford: Blackwell Science; 2002.
Bury K. Statistical Distributions in Engineering. Cambridge, UK: Cambridge University Press; 1999.
Fleming PS, Marinho V, Johal A. Orthodontic measurements on digital study models compared with plaster models: a systematic review. Orthod Craniofac Res. 2011;14(1):1–16. doi: 10.1111/j.1601-6343.2010.01503.x. PubMed DOI
Brandt S. Data Analysis: Statistical and Computational Methods for Scientists and Engineers. USA: Springer-Verlag New York Inc; 1999.
Martinez WL, Martinez AR. Computational Statistics Handbook with MATLAB. Florida, USA: Chapman & Hall/CRC; 2008.
Statistics Toolbox User’s Guide. 3 Apple Hill Drive, Natick, MA: The Mathworks. Inc; 2014.
Creed B, Kau CH, English JD, Xia JJ, Lee RP. A comparison of the accuracy of linear measurements obtained from cone beam computerized tomography images and digital models. Elsevier: Semin Orthod. 2011;17(1):49–56. doi: 10.1053/j.sodo.2010.08.010. PubMed DOI PMC
Luu NS, Nikolcheva LG, Retrouveyc JM, Flores-Mird C, El-Bialye T, Careyf JP, Majorg PW. Linear measurements using virtual study models: a systematic review. Angle Orthod. 2012;82(6):1098–1106. doi: 10.2319/110311-681.1. PubMed DOI PMC
Mayers M, Firestone AR, Rashid R, Vigd KWL. Comparison of peer assessment rating (PAR) index scores of plaster and computer-based digital models. Am J Orthod Dentofacial Orthop. 2005;128(4):431–434. doi: 10.1016/j.ajodo.2004.04.035. PubMed DOI
Graber TM, Vanarsdall RL, Vig KWL. Orthodontics: Current Principles and Techniques. Philadelphia PA 19103-2899; USA: Elsevier; 2012.
Keating AP, Knox J, Bibb R, Zhurov AI. A comparison of plaster, digital and reconstructed study model accuracy. J Orthod. 2008;35(3):191–201. doi: 10.1179/146531207225022626. PubMed DOI
Kasparova M, Grafova L, Dvorak P, Dostalova T, Prochazka A, Eliasova H, Prusa J, Kakawand S. Possibility of reconstruction of dental plaster cast from 3d digital study models. BioMed Eng OnLine. 2013;12(49):1–11. PubMed PMC
ABO. The American Board of Orthodontics (ABO) Digital Model Requirements. 2014. [ http://www.americanboardortho.com/professionals/downloads/ABO_Digital_Model_Requirements.pdf]
Kau CH, Littlefield J, Rainy N, Nguyen JT, Creed B. Evaluation of CBCT digital models and traditional models using the Little’s index. Angle Orthod. 2010;80:435–439. doi: 10.2319/083109-491.1. PubMed DOI PMC
Cuperus AM, Harms MC, Rangel FA, Bronkhorst EM, Schols JG, Breuning KH. Dental models made with an intraoral scanner: a validation study. Am J Orthod Dentofacial Orthop. 2012;142:308–313. doi: 10.1016/j.ajodo.2012.03.031. PubMed DOI
Tarazona B, Llamas JM, Cibrian R, Gandia JL, Paredes V. A comparison between dental measurements taken from CBCT models and those taken from a digital method. Eur J Orthod. 2013;35:1–6. doi: 10.1093/ejo/cjr005. PubMed DOI
Ramalingam S, Taguchi Y. A theory of minimal 3D point to 3D plane registration and its generalization. Int J Comput Vis. 2013;102(1-3):73–90. doi: 10.1007/s11263-012-0576-x. DOI
Separation of overlapping dental arch objects using digital records of illuminated plaster casts