Thyroid hormone receptor α mutation causes a severe and thyroxine-resistant skeletal dysplasia in female mice

. 2014 Sep ; 155 (9) : 3699-712. [epub] 20140610

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24914936

Grantová podpora
G0501486 Medical Research Council - United Kingdom
G0800261 Medical Research Council - United Kingdom
Intramural NIH HHS - United States

A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1(PV/+) mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1(PV/+) mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1(PV/+) mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation.

Zobrazit více v PubMed

Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31(2):139–170. PubMed PMC

Refetoff S, DeWind LT, DeGroot LJ. Familial syndrome combining deaf-mutism, stuppled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J Clin Endocrinol Metab. 1967;27(2):279–294. PubMed

Sakurai A, Takeda K, Ain K, et al. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor β. Proc Natl Acad Sci U S A. 1989;86(22):8977–8981. PubMed PMC

Dumitrescu AM, Refetoff S. The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta. 2013;1830(7):3987–4003. PubMed PMC

Bochukova E, Schoenmakers N, Agostini M, et al. A mutation in the thyroid hormone receptor α gene. N Engl J Med. 2012;366(3):243–249. PubMed

van Mullem A, van Heerebeek R, Chrysis D, et al. Clinical phenotype and mutant TRα1. N Engl J Med. 2012;366(15):1451–1453. PubMed

Moran C, Schoenmakers N, Agostini M, et al. An adult female with resistance to thyroid hormone mediated by defective thyroid hormone receptor α. J Clin Endocrinol Metab. 2013;98(11):4254–4261. PubMed

van Mullem AA, Chrysis D, Eythimiadou A, et al. Clinical phenotype of a new type of thyroid hormone resistance caused by a mutation of the TRα1 receptor: consequences of LT4 treatment. J Clin Endocrinol Metab. 2013;98(7):3029–3038. PubMed

Freitas FR, Capelo LP, O'Shea PJ, et al. The thyroid hormone receptor β-specific agonist GC-1 selectively affects the bone development of hypothyroid rats. J Bone Miner Res. 2005;20(2):294–304. PubMed

Monfoulet LE, Rabier B, Dacquin R, et al. Thyroid hormone receptor β mediates thyroid hormone effects on bone remodeling and bone mass. J Bone Miner Res. 2011;26(9):2036–2044. PubMed

Rabier B, Williams AJ, Mallein-Gerin F, Williams GR, Chassande O. Thyroid hormone-stimulated differentiation of primary rib chondrocytes in vitro requires thyroid hormone receptor β. J Endocrinol. 2006;191(1):221–228. PubMed

Bassett JH, O'Shea PJ, Sriskantharajah S, et al. Thyroid hormone excess rather than thyrotropin deficiency induces osteoporosis in hyperthyroidism. Mol Endocrinol. 2007;21(5):1095–1107. PubMed

Kaneshige M, Kaneshige K, Zhu X, et al. Mice with a targeted mutation in the thyroid hormone β receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA. 2000;97(24):13209–13214. PubMed PMC

Kaneshige M, Suzuki H, Kaneshige K, et al. A targeted dominant negative mutation of the thyroid hormone α1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci USA. 2001;98(26):15095–15100. PubMed PMC

Parrilla R, Mixson AJ, McPherson JA, McClaskey JH, Weintraub BD. Characterization of seven novel mutations of the c-erbA beta gene in unrelated kindreds with generalized thyroid hormone resistance. Evidence for two “hot spot” regions of the ligand binding domain. J Clin Invest. 1991;88(6):2123–2130. PubMed PMC

Cheng SY. Thyroid hormone receptor mutations and disease: insights from knock-in mouse models. Expert Rev Endocrinol Metab. 2007;2(1):47–57. PubMed

Barettino D, Vivanco Ruiz MM, Stunnenberg HG. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 1994;13(13):3039–3049. PubMed PMC

Fozzatti L, Lu C, Kim DW, Cheng SY. Differential recruitment of nuclear coregulators directs the isoform-dependent action of mutant thyroid hormone receptors. Mol Endocrinol. 2011;25(6):908–921. PubMed PMC

Fozzatti L, Lu C, Kim DW, et al. Resistance to thyroid hormone is modulated in vivo by the nuclear receptor corepressor (NCOR1). Proc Natl Acad Sci USA. 2011;108(42):17462–17467. PubMed PMC

Stevens DA, Harvey CB, Scott AJ, et al. Thyroid hormone activates fibroblast growth factor receptor-1 in bone. Mol Endocrinol. 2003;17(9):1751–1766. PubMed

O'Shea PJ, Bassett JH, Sriskantharajah S, Ying H, Cheng SY, Williams GR. Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor α1 or β. Mol Endocrinol. 2005;19(12):3045–3059. PubMed

O'Shea PJ, Bassett JH, Cheng SY, Williams GR. Characterization of skeletal phenotypes of TRα1 and TRβ mutant mice: implications for tissue thyroid status and T3 target gene expression. Nucl Recept Signal. 2006;4:e011. PubMed PMC

Meulenbelt I, Bos SD, Chapman K, et al. Meta-analyses of genes modulating intracellular T3 bio-availability reveal a possible role for the DIO3 gene in osteoarthritis susceptibility. Ann Rheum Dis. 2011;70(1):164–167. PubMed

Meulenbelt I, Min JL, Bos S, et al. Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis. Hum Mol Genet. 2008;17(12):1867–1875. PubMed

Murphy E, Glüer CC, Reid DM, et al. Thyroid function within the upper normal range is associated with reduced bone mineral density and an increased risk of nonvertebral fractures in healthy euthyroid postmenopausal women. J Clin Endocrinol Metab. 2010;95(7):3173–3181. PubMed

Vestergaard P, Mosekilde L. Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid. 2002;12(5):411–419. PubMed

Castaño-Betancourt MC, Van Meurs JB, Bierma-Zeinstra S, et al. The contribution of hip geometry to the prediction of hip osteoarthritis. Osteoarthritis Cartilage. 2013;21(10):1530–1536. PubMed

Neogi T, Bowes MA, Niu J, et al. Magnetic resonance imaging-based three-dimensional bone shape of the knee predicts onset of knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Rheum. 2013;65(8):2048–2058. PubMed PMC

Bassett JH, Logan JG, Boyde A, et al. Mice lacking the calcineurin inhibitor Rcan2 have an isolated defect of osteoblast function. Endocrinology. 2012;153(7):3537–3548. PubMed

Pohlenz J, Maqueem A, Cua K, Weiss RE, Van Sande J, Refetoff S. Improved radioimmunoassay for measurement of mouse thyrotropin in serum: strain differences in thyrotropin concentration and thyrotroph sensitivity to thyroid hormone. Thyroid. 1999;9(12):1265–1271. PubMed

Barca-Mayo O, Liao XH, DiCosmo C, et al. Role of type 2 deiodinase in response to acute lung injury (ALI) in mice. Proc Natl Acad Sci USA. 2011;108(49):E1321–E1329. PubMed PMC

Bianco AC, Anderson G, Forrest D, et al. American thyroid association guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid. 2014;24(1):88–168. PubMed PMC

Bassett JH, Boyde A, Howell PG, et al. Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proc Natl Acad Sci USA. 2010;107(16):7604–7609. PubMed PMC

Bassett JH, van der Spek A, Gogakos A, Williams GR. Quantitative X-ray imaging of rodent bone by Faxitron. Methods Mol Biol. 2012;816:499–506. PubMed

Boyde A, Jones SJ, Aerssens J, Dequeker J. Mineral density quantitation of the human cortical iliac crest by backscattered electron image analysis: variations with age, sex, and degree of osteoarthritis. Bone. 1995;16(6):619–627. PubMed

Doube M, Firth EC, Boyde A. Variations in articular calcified cartilage by site and exercise in the 18-month-old equine distal metacarpal condyle. Osteoarthritis Cartilage. 2007;15(11):1283–1292. PubMed

Schriefer JL, Robling AG, Warden SJ, Fournier AJ, Mason JJ, Turner CH. A comparison of mechanical properties derived from multiple skeletal sites in mice. J Biomech. 2005;38(3):467–475. PubMed

Eriksen EF, Mosekilde L, Melsen F. Kinetics of trabecular bone resorption and formation in hypothyroidism: evidence for a positive balance per remodeling cycle. Bone. 1986;7(2):101–108. PubMed

Rivkees SA, Bode HH, Crawford JD. Long-term growth in juvenile acquired hypothyroidism: the failure to achieve normal adult stature. New Engl J Med. 1988;318(10):599–602. PubMed

Salerno M, Micillo M, Di Maio S, et al. Longitudinal growth, sexual maturation and final height in patients with congenital hypothyroidism detected by neonatal screening. Eur J Endocrinol. 2001;145(4):377–383. PubMed

Mosekilde L, Melsen F. Effect of antithyroid treatment on calcium-phosphorus metabolism in hyperthyroidism. II: Bone histomorphometry. Acta Endocrinol (Copenh). 1978;87(4):751–758. PubMed

Mosekilde L, Melsen F. Morphometric and dynamic studies of bone changes in hypothyroidism. Acta Pathol Microbiol Scand A. 1978;86(1):56–62. PubMed

Waung JA, Bassett JH, Williams GR. Thyroid hormone metabolism in skeletal development and adult bone maintenance. Trends Endocrinol Metab. 2012;23(4):155–162. PubMed

Ritchie RO, Koester KJ, Ionova S, Yao W, Lane NE, Ager JW., 3rd Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone. 2008;43(5):798–812. PubMed PMC

Bassett JH, Nordström K, Boyde A, et al. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol. 2007;21(8):1893–1904. PubMed

Gauthier K, Plateroti M, Harvey CB, et al. Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol Cell Biol. 2001;21(14):4748–4760. PubMed PMC

Tinnikov A, Nordström K, Thorén P, et al. Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1. EMBO J. 2002;21(19):5079–5087. PubMed PMC

Göthe S, Wang Z, Ng L, et al. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev. 1999;13(10):1329–1341. PubMed PMC

Barnard JC, Williams AJ, Rabier B, et al. Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis. Endocrinology. 2005;146(12):5568–5580. PubMed

Xing W, Govoni KE, Donahue LR, et al. Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice. J Bone Miner Res. 2012;27(5):1067–1079. PubMed PMC

Bassett JH, Gogakos A, White JK, et al. . Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength. PLoS Genet. 2012;8(8):e1002858. PubMed PMC

Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest. 2006;116(10):2571–2579. PubMed PMC

Dentice M, Bandyopadhyay A, Gereben B, et al. The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol. 2005;7(7):698–705. PubMed PMC

Zavacki AM, Ying H, Christoffolete MA, et al. Type 1 iodothyronine deiodinase is a sensitive marker of peripheral thyroid status in the mouse. Endocrinology. 2005;146(3):1568–1575. PubMed

Amma LL, Campos-Barros A, Wang Z, Vennström B, Forrest D. Distinct tissue-specific roles for thyroid hormone receptors beta and alpha1 in regulation of type 1 deiodinase expression. Mol Endocrinol. 2001;15(3):467–475. PubMed

Gullberg H, Rudling M, Forrest D, Angelin B, Vennström B. Thyroid hormone receptor beta-deficient mice show complete loss of the normal cholesterol 7alpha-hydroxylase (CYP7A) response to thyroid hormone but display enhanced resistance to dietary cholesterol. Mol Endocrinol. 2000;14(11):1739–1749. PubMed

Zavacki AM, Larsen PR. RTHα, a newly recognized phenotype of the resistance to thyroid hormone (RTH) syndrome in patients with THRA gene mutations. J Clin Endocrinol Metab. 2013;98(7):2684–2686. PubMed PMC

Barca-Mayo O, Liao XH, Alonso M, et al. Thyroid hormone receptor α and regulation of type 3 deiodinase. Mol Endocrinol. 2011;25(4):575–583. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...