Fructose 1-phosphate is the one and only physiological effector of the Cra (FruR) regulator of Pseudomonas putida
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24918052
PubMed Central
PMC4050194
DOI
10.1016/j.fob.2014.03.013
PII: S2211-5463(14)00036-9
Knihovny.cz E-zdroje
- Klíčová slova
- Cra, Cra, catabolic repression/activation protein, F1P, fructose-1-phosphate, F6P, fructose-6-phosphate, FBP, fructose-1,6-bisphosphate, FruR, Fructose 1-phosphate, Fructose operon, G6P, glucose 6-phosphate, ITC, isothermal calorimetry, Pseudomonas putida,
- Publikační typ
- časopisecké články MeSH
Fructose-1-phosphate (F1P) is the preferred effector of the catabolite repressor/activator (Cra) protein of the soil bacterium Pseudomonas putida but its ability to bind other metabolic intermediates in vivo is unclear. The Cra protein of this microorganism (Cra(PP)) was submitted to mobility shift assays with target DNA sequences (the PfruB promoter) and candidate effectors fructose-1,6-bisphosphate (FBP), glucose 6-phosphate (G6P), and fructose-6-phosphate (F6P). 1 mM F1P was sufficient to release most of the Cra protein from its operators but more than 10 mM of FBP or G6P was required to free the same complex. However, isothermal titration microcalorimetry failed to expose any specific interaction between Cra(PP) and FBP or G6P. To solve this paradox, transcriptional activity of a PfruB-lacZ fusion was measured in wild-type and ΔfruB cells growing on substrates that change the intracellular concentrations of F1P and FBP. The data indicated that PfruB activity was stimulated by fructose but not by glucose or succinate. This suggested that Cra(PP) represses expression in vivo of the cognate fruBKA operon in a fashion dependent just on F1P, ruling out any other physiological effector. Molecular docking and dynamic simulations of the Cra-agonist interaction indicated that both metabolites can bind the repressor, but the breach in the relative affinity of Cra(PP) for F1P vs FBP is three orders of magnitude larger than the equivalent distance in the Escherichia coli protein. This assigns the Cra protein of P. putida the sole role of transducing the presence of fructose in the medium into a variety of direct and indirect physiological responses.
Zobrazit více v PubMed
Saier M.H., Jr., Ramseier T.M. The catabolite repressor/activator (Cra) protein of enteric bacteria. J. Bacteriol. 1996;178:3411–3417. PubMed PMC
Ramseier T.M. Cra and the control of carbon flux via metabolic pathways. Res. Microbiol. 1996;147:489–493. PubMed
Ow D.S., Lee R.M., Nissom P.M., Philp R., Oh S.K., Yap M.G. Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and improves growth rate. J. Biotechnol. 2007;131:261–269. PubMed
Bledig S.A., Ramseier T.M., Saier M.H., Jr. FruR mediates catabolite activation of pyruvate kinase (pykF) gene expression in Escherichia coli. J. Bacteriol. 1996;178:280–283. PubMed PMC
Sarkar D., Siddiquee K.A., Arauzo-Bravo M.J., Oba T., Shimizu K. Effect of cra gene knockout together with edd and iclR genes knockout on the metabolism in Escherichia coli. Arch. Microbiol. 2008;190:559–571. PubMed
Geerse R.H., van der Pluijm J., Postma P.W. The repressor of the PEP:fructose phosphotransferase system is required for the transcription of the pps gene of Escherichia coli. Mol. Gen. Genet. 1989;218:348–352. PubMed
Negre D., Oudot C., Prost J.F., Murakami K., Ishihama A., Cozzone A.J., Cortay J.C. FruR-mediated transcriptional activation at the ppsA promoter of Escherichia coli. J. Mol. Biol. 1998;276:355–365. PubMed
Cortay J.C., Negre D., Scarabel M., Ramseier T.M., Vartak N.B., Reizer J., Saier M.H., Jr., Cozzone A.J. In vitro asymmetric binding of the pleiotropic regulatory protein, FruR, to the ace operator controlling glyoxylate shunt enzyme synthesis. J. Biol. Chem. 1994;269:14885–14891. PubMed
Prost J.F., Negre D., Oudot C., Murakami K., Ishihama A., Cozzone A.J., Cortay J.C. Cra-dependent transcriptional activation of the icd gene of Escherichia coli. J. Bacteriol. 1999;181:893–898. PubMed PMC
Ramseier T.M., Chien S.Y., Saier M.H., Jr. Cooperative interaction between Cra and Fnr in the regulation of the cydAB operon of Escherichia coli. Curr. Microbiol. 1996;33:270–274. PubMed
Ramseier T.M., Negre D., Cortay J.C., Scarabel M., Cozzone A.J., Saier M.H., Jr. In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J. Mol. Biol. 1993;234:28–44. PubMed
Ramseier T.M., Bledig S., Michotey V., Feghali R., Saier M.H., Jr. The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli. Mol. Microbiol. 1995;16:1157–1169. PubMed
Kotte O., Zaugg J.B., Heinemann M. Bacterial adaptation through distributed sensing of metabolic fluxes. Mol. Sys. Biol. 2010;6:355. PubMed PMC
Kochanowski K., Volkmer B., Gerosa L., Haverkorn van Rijsewijk B.R., Schmidt A., Heinemann M. Functioning of a metabolic flux sensor in Escherichia coli. Proc. Natl. Acad. Sci. USA. 2013;110:1130–1135. PubMed PMC
Chavarria M., Kleijn R.J., Sauer U., Pfluger-Grau K., Casasnovas J.M., de Lorenzo V. Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. mBio 3. 2012 e00028–00012. PubMed PMC
Chavarria M., Santiago C., Platero R., Krell T., Casasnovas J.M., de Lorenzo V. Fructose 1-phosphate is the preferred effector of the metabolic regulator Cra of Pseudomonas putida. J. Biol. Chem. 2011;286:9351–9359. PubMed PMC
Chavarria M., Fuhrer T., Sauer U., Pfluger-Grau K., de Lorenzo V. Cra regulates the cross-talk between the two branches of the phosphoenolpyruvate: phosphotransferase system of Pseudomonas putida. Environ. Microbiol. 2013;15:121–132. PubMed
Bennett B.D., Kimball E.H., Gao M., Osterhout R., Van Dien S.J., Rabinowitz J.D. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 2009;5:593–599. PubMed PMC
Silva-Rocha R., de Lorenzo V. Broadening the signal specificity of prokaryotic promoters by modifying cis-regulatory elements associated with a single transcription factor. Mol. BioSys. 2012;8:1950–1957. PubMed
Miller J.H. Cold Spring Harbor; N.Y: 1972. Experiments in molecular genetics.
Jain V.K., Magrath I.T. A chemiluminescent assay for quantitation of beta-galactosidase in the femtogram range: application to quantitation of beta-galactosidase in lacZ-transfected cells. Anal. Biochem. 1991;199:119–124. PubMed
Nogales J., Palsson B.O., Thiele I. A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst. Biol. 2008;2:79. PubMed PMC
Puchalka J., Oberhardt M.A., Godinho M., Bielecka A., Regenhardt D., Timmis K.N., Papin J.A., Martins dos Santos V.A. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput. Biol. 2008;4:e1000210. PubMed PMC
McMurry J.E., Begley T.P. Roberts and Company Publishers; Colorado: 2005. The organic chemistry of biological pathways.
Wrolstad R.E. John Wiley & Sons Inc; West Sussex, UK: 2012. Food Carbohydrate Chemistry.
Milanesio P., Arce-Rodriguez A., Munoz A., Calles B., de Lorenzo V. Regulatory exaptation of the catabolite repression protein (Crp)-cAMP system in Pseudomonas putida. Environ. Microbiol. 2011;13:324–339. PubMed
Nelson K.E., Weinel C., Paulsen I.T., Dodson R.J., Hilbert H., Martins dos Santos V.A., Fouts D.E., Gill S.R., Pop M., Holmes M., Brinkac L., Beanan M., DeBoy R.T., Daugherty S., Kolonay J., Madupu R., Nelson W., White O., Peterson J., Khouri H., Hance I., Chris Lee P., Holtzapple E., Scanlan D., Tran K., Moazzez A., Utterback T., Rizzo M., Lee K., Kosack D., Moestl D., Wedler H., Lauber J., Stjepandic D., Hoheisel J., Straetz M., Heim S., Kiewitz C., Eisen J.A., Timmis K.N., Dusterhoft A., Tummler B., Fraser C.M. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 2002;4:799–808. PubMed
Martinez-Garcia E., de Lorenzo V. Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ. Microbiol. 2011;13:2702–2716. PubMed
Sambrook J., Maniatis T., Fritsch T. Cold Spring Harbor Laboratory Press; N.Y: 1989. Molecular cloning: a laboratory manual.
Barragan M.J., Blazquez B., Zamarro M.T., Mancheno J.M., Garcia J.L., Diaz E., Carmona M. BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J. Biol. Chem. 2005;280:10683–10694. PubMed
Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. Protein Identification and Analysis Tools on the ExPASy Server. In: Walker J.M., editor. The Poteomics Protocols Handbook. Humana Press; 2005. pp. 571–607.
Fuhrer T., Sauer U. Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J. Bacteriol. 2009;191:2112–2121. PubMed PMC
Buescher J.M., Moco S., Sauer U., Zamboni N. Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal. Chem. 2010;82:4403–4412. PubMed
Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. PubMed PMC
Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. PubMed
Gordon J.C., Myers J.B., Folta T., Shoja V., Heath L.S., Onufriev A. H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucl. Acids Res. 2005;33:W368–W371. PubMed PMC
Sanner M.F. Python: a programming language for software integration and development. J. Mol. Graph. Model. 1999;17:57–61. PubMed
Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J. Automated docking using a Lamarckian genetic algorithm and an emperical binding free energy function. J. Comput. Chem. 1998;19:1639–1662.
Huey R., Morris G.M., Olson A.J., Goodsell D.S. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 2007;28:1145–1152. PubMed
Solis F.J., Wets R.J.B. Minimization by random search techniques. Math. Oper. Res. 1981;6:19–30.
Jakalian A., Bush B.L., Jack D.B., Bayly C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 2000;21:132–146. PubMed
Case D.A., Darden T.A., Cheatham T.E., Simmerling C.L., Wang J., Duke R.E., Luo R., Walker R.C., Zhang W., Merz K.M., Roberts B., Wang B., Hayik S., Roitberg A., Seabra G., Kolossváry I., Wong K.F., Paesani F., Vanicek J., Wu X., Brozell S.R., Steinbrecher T., Gohlke H., Cai Q., Ye X., Wang J., Hsieh M.J., Cui G., Roe D.R., Mathews D.H., Seetin M.G., Sagui C., Babin V., Luchko T., Gusarov S., Kovalenko A., Kollman P.A. University of California; San Francisco: 2010. AMBER 11 in.
Case D.A., Cheatham T.E., Darden T., Gohlke H., Luo R., Merz K.M., Onufriev A., Simmerling C., Wang B., Woods R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005;26:1668–1688. PubMed PMC
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.
Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006;65:712–725. PubMed PMC
Darden T., York D., Pedersen L. Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;103:8577–8593.
Essmann U., Perera L., Berkowitz M., Darden T., Lee H., Pedersen L. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593.
Ryckaert J.P., Ciccotto G., Berendsen H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341.
Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. PubMed
Srinivasan J., Cheatham T.E., Cieplak P., Kollman P.A., Case D.A. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate−DNA helices. J. Am. Chem. Soc. 1998;120:9401–9409.
Luo R., David L., Gilson M.K. Accelerated Poisson–Boltzmann calculations for static and dynamic systems. J. Comput. Chem. 2002;23:1244–1253. PubMed
Onufriev A., Bashford D., Case D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins. 2004;55:383–394. PubMed
Weiser J., Shenkin P., Still C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO) J. Comput. Chem. 1999;20:217–230.