High throughput toxicity screening and intracellular detection of nanomaterials

. 2017 Jan ; 9 (1) : . [epub] 20160607

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27273980

With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety-preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read-across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter-experimental variation, and makes substantial savings in time and cost. HTS/HCA approaches facilitate the classification of key biological indicators of NM-cell interactions. Validation of in vitro HTS tests is required, taking account of relevance to in vivo results. HTS/HCA approaches are needed to assess dose- and time-dependent toxicity, allowing prediction of in vivo adverse effects. Several HTS/HCA methods are being validated and applied for NM testing in the FP7 project NANoREG, including Label-free cellular screening of NM uptake, HCA, High throughput flow cytometry, Impedance-based monitoring, Multiplex analysis of secreted products, and genotoxicity methods-namely High throughput comet assay, High throughput in vitro micronucleus assay, and γH2AX assay. There are several technical challenges with HTS/HCA for NM testing, as toxicity screening needs to be coupled with characterization of NMs in exposure medium prior to the test; possible interference of NMs with HTS/HCA techniques is another concern. Advantages and challenges of HTS/HCA approaches in NM safety are discussed. WIREs Nanomed Nanobiotechnol 2017, 9:e1413. doi: 10.1002/wnan.1413 For further resources related to this article, please visit the WIREs website.

ANSES Fougères Laboratory Contaminant Toxicology Unit France

CIBER Epidemiología y Salud Pública ISCIII Spain

Comet Biotech AS and Department of Nutrition University of Oslo Norway

Commissariat à l'Energie Atomique et aux Energies Alternatives Direction des Sciences du Vivant Institut de Radiobiologie Cellulaire et Moléculaire Service de Radiobiologie Expérimentale et d'Innovation Technologique Laboratoire de Cancérologie Expérimentale Fontenay aux Roses cedex France

Department of Clinical Dentistry Faculty of Medicine and Dentistry University of Bergen Norway

Department of Electrical Engineering Faculty of Engineering Bergen University College Norway

Directory of Life Sciences Applied Metrology National Institute of Metrology Quality and Technology Rio de Janeiro Brazil

GAIKER Technology Centre Bizkaia Science and Technology Park Zamudio Spain

Grup de Mutagènesi Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Bellaterra Spain

Health Effects Group Department of Environmental Chemistry NILU Norwegian Institute for Air Research Kjeller Norway

Human Genetics Department National Institute of Health Doutor Ricardo Jorge and Centre for Toxicogenomics and Human Health NMS FCM UNL Lisbon Portugal

Institute of Biophysics and Medical Physics University of Leipzig Leipzig Germany

Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden

Institute of Experimental Medicine AS CR Prague Czech Republic

Nanomedicine Group Trinity Centre for Health Sciences Trinity College Dublin Dublin Ireland

Zobrazit více v PubMed

Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006, 311:622–627. PubMed

Donaldson K, Poland CA. Nanotoxicity: challenging the myth of nano‐specific toxicity. Curr Opin Biotechnol 2013, 24:724–734. PubMed

Cohen Y, Rallo R, Liu R, Liu HH. In silico analysis of nanomaterials hazard and risk. Acc Chem Res 2013, 46:802–812. PubMed

Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high‐throughput screening. Acc Chem Res 2013, 46:607–621. PubMed PMC

Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 2012, 258:151–165. PubMed

Dusinska M, Magdolenova Z, Fjellsbo LM. Toxicological aspects for nanomaterial in humans. Methods Mol Biol 2013, 948:1–12. PubMed

Dusinska M, Fjellsbø LM, Magdolenova Z, Ravnum S, Rinna A. Safety of nanomaterial in nanomedicine In: Hunter RJ, Preedy VR, eds. Nanomedicine in Health and Disease. Jersey, British Isles Enfield, New Hampshire: CRC Press; 2011, 203–226.

Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med 2004, 61:727–728. PubMed PMC

Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 2008, 4:26–49. PubMed

George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, Wang X, Zhang H, France B, Schoenfeld D, et al. Use of a high‐throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 2011, 5:1805–1817. PubMed PMC

Prina‐Mello A, Bashir M, Verma N, Namrata J, Volkov Y. Advanced methodologies and techniques for assessing nanomaterials toxicity from manufacturing to nanomedecine screening In: Nanotoxicology: Progress toward Nanomedicine. Boca Raton, Florida: CRC Press, Taylor Francis Group; 2014, 155–176.

Prina‐Mello A, Crosbie‐Staunton K, Salas G, del Puerto MM, Volkov Y. Multiparametric toxicity evaluation of SPIONs by high content screening technique: identification of biocompatible multifunctional nanoparticles for nanomedicine. IEEE Trans Magn 2013, 49:377–382.

Mohamed BM, Verma NK, Davies AM, McGowan A, Crosbie‐Staunton K, Prina‐Mello A, Kelleher D, Botting CH, Causey CP, Thompson PR, et al. Citrullination of proteins: a common post‐translational modification pathway induced by different nanoparticles in vitro and in vivo. Nanomedicine (Lond) 2012, 7:1181–1195. PubMed PMC

Fischer HC, Fournier‐Bidoz S, Chan WCW, Pang KS. Quantitative detection of engineered nanoparticles in tissues and organs: an investigation of efficacy and linear dynamic ranges using ICP‐AES. Nanobiotechnology 2007, 3:46–54.

Albanese A, Tsoi KM, Chan WC. Simultaneous quantification of cells and nanomaterials by inductive‐coupled plasma techniques. J Lab Autom 2013, 18:99–104. PubMed

Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 2010, 30:212–217. PubMed

Zhou X, Dorn M, Vogt J, Spemann D, Yu W, Mao Z, Estrela‐Lopis I, Donath E, Gao C. A quantitative study of the intracellular concentration of graphene/noble metal nanoparticle composites and their cytotoxicity. Nanoscale 2014, 6:8535–8542. PubMed

Laborda F, Bolea E, Jimenez‐Lamana J. Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 2014, 86:2270–2278. PubMed

Allouni ZE, Gjerdet NR, Cimpan MR, Hol PJ. The effect of blood protein adsorption on cellular uptake of anatase TiO2 nanoparticles. Int J Nanomedicine 2015, 10:687–695. PubMed PMC

Reinert T, Andrea T, Barapatre N, Hohlweg M, Koal T, Larisch W, Reinert A, Spemann D, Vogt J, Werner R, et al. Biomedical research at LIPSION – present state and future developments. Nucl Instrum Methods Phys Res B: Beam Interact Mater Atoms 2011, 269:2254–2259.

Tanaka N, Kimura H, Faried A, Sakai M, Sano A, Inose T, Sohda M, Okada K, Nakajima M, Miyazaki T, et al. Quantitative analysis of cisplatin sensitivity of human esophageal squamous cancer cell lines using in‐air micro‐PIXE. Cancer Sci 2010, 101:1487–1492. PubMed PMC

Llop J, Estrela‐Lopis I, Ziolo RF, Gonzalez A, Fleddermann J, Dorn M, Gomez Vallejo V, Simon‐Vazquez R, Donath E, Mao Z, et al. Uptake, biological fate, and toxicity of metal oxide nanoparticles. Part Part Syst Charact 2014, 31:24–35.

Gatti AM. Biocompatibility of micro‐ and nano‐particles in the colon. Part II. Biomaterials 2004, 25:385–392. PubMed

Zelenik K, Kukutschova J, Dvorackova J, Bielnikova H, Peikertova P, Cabalova L, Kominek P. Possible role of nano‐sized particles in chronic tonsillitis and tonsillar carcinoma: a pilot study. Eur Arch Otorhinolaryngol 2013, 270:705–709. PubMed

Pichler BJ, Kolb A, Nagele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 2010, 51:333–336. PubMed

Perez‐Campana C, Gomez‐Vallejo V, Puigivila M, Martin A, Calvo‐Fernandez T, Moya SE, Ziolo RF, Reese T, Llop J. Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano 2013, 7:3498–3505. PubMed

Taylor A, Herrmann A, Moss D, See V, Davies K, Williams SR, Murray P. Assessing the efficacy of nano‐ and micro‐sized magnetic particles as contrast agents for MRI cell tracking. PLoS One 2014, 9:e100259. PubMed PMC

Monteiro‐Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 2011, 123:264–280. PubMed

Nemmar A, Al‐Maskari S, Ali BH, Al‐Amri IS. Cardiovascular and lung inflammatory effects induced by systemically administered diesel exhaust particles in rats. Am J Physiol Lung Cell Mol Physiol 2007, 292:L664–L670. PubMed

Takenaka S, Karg E, Kreyling WG, Lentner B, Moller W, Behnke‐Semmler M, Jennen L, Walch A, Michalke B, Schramel P, et al. Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol 2006, 18:733–740. PubMed

Heymann JA, Hayles M, Gestmann I, Giannuzzi LA, Lich B, Subramaniam S. Site‐specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol 2006, 155:63–73. PubMed PMC

Haase A, Arlinghaus HF, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F, Galla S, Plendl J, Goetz ME, et al. Application of laser postionization secondary neutral mass spectrometry/time‐of‐flight secondary ion mass spectrometry in nanotoxicology: visualization of nanosilver in human macrophages and cellular responses. ACS Nano 2011, 5:3059–3068. PubMed

Lee PL, Chen BC, Gollavelli G, Shen SY, Yin YS, Lei SL, Jhang CL, Lee WR, Ling YC. Development and validation of TOF‐SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells. J Hazard Mater 2014, 277:3–12. PubMed

Perna G, Lastella M, Lasalvia M, Mezzenga E, Capozzi V. Raman spectroscopy and atomic force microscopy study of cellular damage in human keratinocytes treated with HgCl2 . J Mol Struct 2007, 834–836:182–187.

Pyrgiotakis G, Kundakcioglu OE, Pardalos PM, Moudgil BM. Raman spectroscopy and support vector machines for quick toxicological evaluation of titania nanoparticles. J Raman Spectrosc 2011, 42:1222–1231.

Zoladek A, Pascut FC, Patel P, Notingher I. Non‐invasive time‐course imaging of apoptotic cells by confocal Raman micro‐spectroscopy. J Raman Spectrosc 2011, 42:251–258.

Uzunbajakava N, Lenferink A, Kraan Y, Volokhina E, Vrensen G, Greve J, Otto C. Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophys J 2003, 84:3968–3981. PubMed PMC

Krafft C, Knetschke T, Funk RH, Salzer R. Studies on stress‐induced changes at the subcellular level by Raman microspectroscopic mapping. Anal Chem 2006, 78:4424–4429. PubMed

Owen CA, Selvakumaran J, Notingher I, Jell G, Hench LL, Stevens MM. In vitro toxicology evaluation of pharmaceuticals using Raman micro‐spectroscopy. J Cell Biochem 2006, 99:178–186. PubMed

le Roux K, Prinsloo LC, Hussein AA, Lall N. A micro‐Raman spectroscopic investigation of leukemic U‐937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine. Spectrochim Acta A Mol Biomol Spectrosc 2012, 95:547–554. PubMed

Sinclair MB, Haaland DM, Timlin JA, Jones HD. Hyperspectral confocal microscope. Appl Opt 2006, 45:6283–6291. PubMed

Matthaus C, Chernenko T, Newmark JA, Warner CM, Diem M. Label‐free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophys J 2007, 93:668–673. PubMed PMC

Klein K, Gigler AM, Aschenbrenner T, Monetti R, Bunk W, Jamitzky F, Morfill G, Stark RW, Schlegel J. Label‐free live‐cell imaging with confocal Raman microscopy. Biophys J 2012, 102:360–368. PubMed PMC

Matthaus C, Kale A, Chernenko T, Torchilin V, Diem M. New ways of imaging uptake and intracellular fate of liposomal drug carrier systems inside individual cells, based on Raman microscopy. Mol Pharm 2008, 5:287–293. PubMed PMC

Romero G, Estrela‐Lopis I, Zhou J, Rojas E, Franco A, Espinel CS, Fernandez AG, Gao C, Donath E, Moya SE. Surface engineered Poly(lactide‐co‐glycolide) nanoparticles for intracellular delivery: uptake and cytotoxicity—a confocal raman microscopic study. Biomacromolecules 2010, 11:2993–2999. PubMed

Romero G, Ochoteco O, Sanz DJ, Estrela‐Lopis I, Donath E, Moya SE. Poly(lactide‐co‐glycolide) nanoparticles, layer by layer engineered for the sustainable delivery of antiTNF‐α. Macromol Biosci 2013, 13:903–912. PubMed

Romero G, Estrela‐Lopis I, Castro‐Hartmann P, Rojas E, Llarena I, Sanz D, Donath E, Moya SE. Stepwise surface tailoring of carbon nanotubes with polyelectrolyte brushes and lipid layers to control their intracellular distribution and “in vitro” toxicity. Soft Matter 2011, 7:6883–6890.

Estrela‐Lopis I, Romero G, Rojas E, Moya SE, Donath E. Nanoparticle uptake and their co‐localization with cell compartments – a confocal Raman microscopy study at single cell level. J Phys Conf Ser 2011, 304:012017.

Worle‐Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006, 6:1261–1268. PubMed

Luque‐Garcia JL, Cabezas‐Sanchez P, Anunciacao DS, Camara C. Analytical and bioanalytical approaches to unravel the selenium‐mercury antagonism: a review. Anal Chim Acta 2013, 801:1–13. PubMed

Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze‐Isfort C, Gobbert C, Voetz M, Hardinghaus F, Schnekenburger J. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 2011, 8:9. PubMed PMC

Park EJ, Park K. Oxidative stress and pro‐inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 2009, 184:18–25. PubMed

Yeon JH, Park JK. Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip. Anal Biochem 2005, 341:308–315. PubMed

Ceriotti L, Ponti J, Colpo P, Sabbioni E, Rossi F. Assessment of cytotoxicity by impedance spectroscopy. Biosens Bioelectron 2007, 22:3057–3063. PubMed

Hondroulis E, Liu C, Li CZ. Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay. Nanotechnology 2010, 21:315103. PubMed

Monteiro‐Riviere NA, Inman AO, Zhang LW. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 2009, 234:222–235. PubMed

Monteiro‐Riviere NA, Inman AO. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 2006, 44:1070–1078.

Cimpan M, Mordal T, Allouni Z, Pliquett U, Cimpan E. An impedance‐based high‐throughput method for evaluating the cytotoxicity of nanoparticles. J Phys Conf Ser 2013, 429:012026. doi:10.1088/1742-6596/429/1/012026. DOI

Walker NJ, Bucher JR. A 21st century paradigm for evaluating the health hazards of nanoscale materials? Toxicol Sci 2009, 110:251–254. PubMed PMC

Feliu N, Fadeel B. Nanotoxicology: no small matter. Nanoscale 2010, 2:2514–2520. PubMed

Guadagnini R, Moreau K, Hussain S, Marano F, Boland S. Toxicity evaluation of engineered nanoparticles for medical applications using pulmonary epithelial cells. Nanotoxicology 2015, 9:25–32. PubMed

Guadagnini R, Halamoda Kenzaoui B, Walker L, Pojana G, Magdolenova Z, Bilanicova D, Saunders M, Juillerat‐Jeanneret L, Marcomini A, Huk A, et al. Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology 2015, 9(Suppl 1):13–24. PubMed

Urcan E, Haertel U, Styllou M, Hickel R, Scherthan H, Reichl FX. Real‐time xCELLigence impedance analysis of the cytotoxicity of dental composite components on human gingival fibroblasts. Dent Mater 2010, 26:51–58. PubMed

Wegener J, Keese CR, Giaever I. Electric Cell–Substrate Impedance Sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 2000, 259:158–166. PubMed

Thomas N. High‐content screening: a decade of evolution. J Biomol Screen 2010, 15:1–9. PubMed

Hoffman AF, Garippa RJ. A pharmaceutical company user's perspective on the potential of high content screening in drug discovery. Methods Mol Biol 2007, 356:19–31. PubMed

Trask OJ Jr, Baker A, Williams RG, Nickischer D, Kandasamy R, Laethem C, Johnston PA, Johnston PA. Assay development and case history of a 32 K‐biased library high‐content MK2‐EGFP translocation screen to identify p38 mitogen‐activated protein kinase inhibitors on the ArrayScan 3.1 imaging platform. Methods Enzymol 2006, 414:419–439. PubMed

Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D. Cellular imaging predictions of clinical drug‐induced liver injury. Toxicol Sci 2008, 105:97–105. PubMed

Anguissola S, Garry D, Salvati A, O'Brien PJ, Dawson KA. High content analysis provides mechanistic insights on the pathways of toxicity induced by amine‐modified polystyrene nanoparticles. PLoS One 2014, 9:e108025. PubMed PMC

Jan E, Byrne SJ, Cuddihy M, Davies AM, Volkov Y, Gun'ko YK, Kotov NA. High‐content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2008, 2:928–938. PubMed

Harris G, Palosaari T, Magdolenova Z, Mennecozzi M, Gineste JM, Saavedra L, Milcamps A, Huk A, Collins AR, Dusinska M, et al. Iron oxide nanoparticle toxicity testing using high‐throughput analysis and high‐content imaging. Nanotoxicology 2015, 9:87–94. PubMed

Lin S, Zhao Y, Xia T, Meng H, Ji Z, Liu R, George S, Xiong S, Wang X, Zhang H, et al. High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano 2011, 5:7284–7295. PubMed PMC

Damoiseaux R, George S, Li M, Pokhrel S, Ji Z, France B, Xia T, Suarez E, Rallo R, Madler L, et al. No time to lose—high throughput screening to assess nanomaterial safety. Nanoscale 2011, 3:1345–1360. PubMed PMC

Edwards BS, Young SM, Saunders MJ, Bologa C, Oprea TI, Ye RD, Prossnitz ER, Graves SW, Sklar LA. High‐throughput flow cytometry for drug discovery. Expert Opin Drug Discov 2007, 2:685–696. PubMed

Peluso J, Tabaka‐Moreira H, Taquet N, Dumont S, Muller CD, Reimund J‐M. Can flow cytometry play a part in cell based high‐content screening? Cytometry A 2007, 71A:901–904. PubMed

Goñi‐de‐Cerio F, Mariani V, Cohen D, Madi L, Thevenot J, Oliviera H, Uboldi C, Giudetti G. Biocompatibility study of two diblock copolymeric NPs for biomedical applications by in vitro toxicity testing. J NP Res 2013, 11:1–17.

Errico C, Goñi‐de‐Cerio F, Alderighi M, Ferri M, Suarez‐Merino B, Soroka Y, Frušić‐Zlotkin M, Chiellini F. Retinyl palmitate–loaded poly(lactide‐co‐glycolide) nanoparticles for the topical treatment of skin diseases. J Bioact Compat Polym 2012, 27:604–620.

Zucker RM, Daniel KM. Detection of TiO2 nanoparticles in cells by flow cytometry. Methods Mol Biol 2012, 906:497–509. PubMed

Zucker RM, Massaro EJ, Sanders KM, Degn LL, Boyes WK. Detection of TiO2 nanoparticles in cells by flow cytometry. Cytometry A 2010, 77:677–685. PubMed

Schoelermann J, Burtey A, Allouni ZE, Gerdes H‐H, Cimpan MR. Contact‐dependent transfer of TiO2 nanoparticles between mammalian cells. Nanotoxicology 2016, 10:204–215. PubMed

Zucker RM, Daniel KM, Massaro EJ, Karafas SJ, Degn LL, Boyes WK. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far‐red fluorescence. Cytometry A 2013, 83:962–972. PubMed

Paget V, Moche H, Kortulewski T, Grall R, Irbah L, Nesslany F, Chevillard S. Human cell line‐dependent WC‐Co nanoparticle cytotoxicity and genotoxicity: a key role of ROS production. Toxicol Sci 2015, 143:385–397. PubMed

Grall R, Girard H, Saad L, Petit T, Gesset C, Combis‐Schlumberger M, Paget V, Delic J, Arnault JC, Chevillard S. Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials 2015, 61:290–298. PubMed

Vranic S, Boggetto N, Contremoulins V, Mornet S, Reinhardt N, Marano F, Baeza‐Squiban A, Boland S. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part Fibre Toxicol 2013, 10:2. PubMed PMC

Giaever I, Keese CR. A morphological biosensor for mammalian cells. Nature 1993, 366:591–592. PubMed

Coffman FD, Cohen S. Impedance measurements in the biomedical sciences. Stud Health Technol Inform 2013, 185:185–205. PubMed

Lingwood BE. Bioelectrical impedance analysis for assessment of fluid status and body composition in neonates—the good, the bad and the unknown. Eur J Clin Nutr 2013, 67(Suppl 1):S28–S33. PubMed

Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gomez J, Lilienthal Heitmann B, Kent‐Smith L, Melchior JC, Pirlich M, et al. Bioelectrical impedance analysis‐part II: utilization in clinical practice. Clin Nutr 2004, 23:1430–1453. PubMed

Pliquett U. Bioimpedance: a review for food processing. Food Eng Rev 2010, 2:74–94.

Lukaski HC. Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr 2013, 67(Suppl 1):S2–S9. PubMed

Xiao C, Lachance B, Sunahara G, Luong JH. Assessment of cytotoxicity using electric cell‐substrate impedance sensing: concentration and time response function approach. Anal Chem 2002, 74:5748–5753. PubMed

Irelan JT, Wu MJ, Morgan J, Ke N, Xi B, Wang X, Xu X, Abassi YA. Rapid and quantitative assessment of cell quality, identity, and functionality for cell‐based assays using real‐time cellular analysis. J Biomol Screen 2011, 16:313–322. PubMed

Pan T, Huang B, Zhang W, Gabos S, Huang DY, Devendran V. Cytotoxicity assessment based on the AUC50 using multi‐concentration time‐dependent cellular response curves. Anal Chim Acta 2013, 764:44–52. PubMed

Pan T, Khare S, Ackah F, Huang B, Zhang W, Gabos S, Jin C, Stampfl M. In vitro cytotoxicity assessment based on KC(50) with real‐time cell analyzer (RTCA) assay. Comput Biol Chem 2013, 47:113–120. PubMed

Kavlock R, Chandler K, Houck K, Hunter S, Judson R, Kleinstreuer N, Knudsen T, Martin M, Padilla S, Reif D, et al. Update on EPA's ToxCast program: providing high throughput decision support tools for chemical risk management. Chem Res Toxicol 2012, 25:1287–1302. PubMed

Xing JZ, Zhu L, Jackson JA, Gabos S, Sun XJ, Wang XB, Xu X. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol 2005, 18:154–161. PubMed

Ke N, Wang X, Xu X, Abassi YA. The xCELLigence system for real‐time and label‐free monitoring of cell viability. Methods Mol Biol 2011, 740:33–43. PubMed

Otero‐Gonzalez L, Sierra‐Alvarez R, Boitano S, Field JA. Application and validation of an impedance‐based real time cell analyzer to measure the toxicity of nanoparticles impacting human bronchial epithelial cells. Environ Sci Technol 2012, 46:10271–10278. PubMed

Paget V, Sergent JA, Grall R, Altmeyer‐Morel S, Girard HA, Petit T, Gesset C, Mermoux M, Bergonzo P, Arnault JC, et al. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology 2014, 8(Suppl 1):46–56. PubMed

Paget V, Dekali S, Kortulewski T, Grall R, Gamez C, Blazy K, Aguerre‐Chariol O, Chevillard S, Braun A, Rat P, et al. Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages. PLoS One 2015, 10:e0123297. PubMed PMC

Scrace S, O'Neill E, Hammond EM, Pires IM. Use of the xCELLigence system for real‐time analysis of changes in cellular motility and adhesion in physiological conditions. Methods Mol Biol 2013, 1046:295–306. PubMed

Cheung KC, Di Berardino M, Schade‐Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, Mittag A, Tarnok A. Microfluidic impedance‐based flow cytometry. Cytometry A 2010, 77:648–666. PubMed

Moe B, Gabos S, Li XF. Real‐time cell‐microelectronic sensing of nanoparticle‐induced cytotoxic effects. Anal Chim Acta 2013, 789:83–90. PubMed

Heileman K, Daoud J, Tabrizian M. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosens Bioelectron 2013, 49:348–359. PubMed

Ponti J, Ceriotti L, Munaro B, Farina M, Munari A, Whelan M, Colpo P, Sabbioni E, Rossi F. Comparison of impedance‐based sensors for cell adhesion monitoring and in vitro methods for detecting cytotoxicity induced by chemicals. Altern Lab Anim 2006, 34:515–525. PubMed

Kustermann S, Boess F, Buness A, Schmitz M, Watzele M, Weiser T, Singer T, Suter L, Roth A. A label‐free, impedance‐based real time assay to identify drug‐induced toxicities and differentiate cytostatic from cytotoxic effects. Toxicol In Vitro 2013, 27:1589–1595. PubMed

Moodley K, Angel CE, Glass M, Graham ES. Real‐time profiling of NK cell killing of human astrocytes using xCELLigence technology. J Neurosci Methods 2011, 200:173–180. PubMed

Fang R, Qiao S, Liu Y, Meng Q, Chen X, Song B, Hou X, Tian W. Sustained co‐delivery of BIO and IGF‐1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts. Int J Nanomedicine 2015, 10:4691–4703. PubMed PMC

Song H, Zhang J, Wang W, Huang P, Zhang Y, Liu J, Li C, Kong D. Acid‐responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin‐1 receptor‐mediated targeted drug delivery. Colloids Surf B Biointerfaces 2015, 136:365–374. PubMed

Wang T, Hu N, Cao J, Wu J, Su K, Wang P. A cardiomyocyte‐based biosensor for antiarrhythmic drug evaluation by simultaneously monitoring cell growth and beating. Biosens Bioelectron 2013, 49:9–13. PubMed

Li JM, Zhao MX, Su H, Wang YY, Tan CP, Ji LN, Mao ZW. Multifunctional quantum‐dot‐based siRNA delivery for HPV18 E6 gene silence and intracellular imaging. Biomaterials 2011, 32:7978–7987. PubMed

Li JM, Wang YY, Zhao MX, Tan CP, Li YQ, Le XY, Ji LN, Mao ZW. Multifunctional QD‐based co‐delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real‐time tracking. Biomaterials 2012, 33:2780–2790. PubMed

Sun M, Fu H, Cheng H, Cao Q, Zhao Y, Mou X, Zhang X, Liu X, Ke Y. A dynamic real‐time method for monitoring epithelial barrier function in vitro. Anal Biochem 2012, 425:96–103. PubMed

Diemert S, Dolga AM, Tobaben S, Grohm J, Pfeifer S, Oexler E, Culmsee C. Impedance measurement for real time detection of neuronal cell death. J Neurosci Methods 2012, 203:69–77. PubMed

Val S, Hussain S, Boland S, Hamel R, Baeza‐Squiban A, Marano F. Carbon black and titanium dioxide nanoparticles induce pro‐inflammatory responses in bronchial epithelial cells: need for multiparametric evaluation due to adsorption artifacts. Inhal Toxicol 2009, 21(Suppl 1):115–122. PubMed

Turci F, Ghibaudi E, Colonna M, Boscolo B, Fenoglio I, Fubini B. An integrated approach to the study of the interaction between proteins and nanoparticles. Langmuir 2010, 26:8336–8346. PubMed

Leng SX, McElhaney JE, Walston JD, Xie D, Fedarko NS, Kuchel GA. ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci 2008, 63:879–884. PubMed PMC

Purohit S, Sharma A, She JX. Luminex and other multiplex high throughput technologies for the identification of, and host response to, environmental triggers of type 1 diabetes. Biomed Res Int 2015, 2015:326918. PubMed PMC

Ghosh R, Singh LC, Shohet JM, Gunaratne PH. A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 2013, 34:807–816. PubMed

Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013, 10:831–847. PubMed PMC

Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1:325–327. PubMed

Leite PE, Pereira MR, do Nascimento Santos CA, Campos AP, Esteves TM, Granjeiro JM. Gold nanoparticles do not induce myotube cytotoxicity but increase the susceptibility to cell death. Toxicol In Vitro 2015, 29:819–827. PubMed

Dusinska M, Boland S, Saunders M, Juillerat‐Jeanneret L, Tran L, Pojana G, Marcomini A, Volkovova K, Tulinska J, Knudsen LE, et al. Towards an alternative testing strategy for nanomaterials used in nanomedicine: lessons from NanoTEST. Nanotoxicology 2015, 9(Suppl 1):118–132. PubMed

Azqueta A, Gutzkow KB, Priestley CC, Meier S, Walker JS, Brunborg G, Collins AR. A comparative performance test of standard, medium‐ and high‐throughput comet assays. Toxicol In Vitro 2013, 27:768–773. PubMed

Gutzkow KB, Langleite TM, Meier S, Graupner A, Collins AR, Brunborg G. High‐throughput comet assay using 96 minigels. Mutagenesis 2013, 28:333–340. PubMed

Huk A, Izak‐Nau E, Reidy B, Boyles M, Duschl A, Lynch I, Dusinska M. Is the toxic potential of nanosilver dependent on its size? Part Fibre Toxicol 2014, 11:65. PubMed PMC

Huk A, Collins AR, El Yamani N, Porredon C, Azqueta A, de Lapuente J, Dusinska M. Critical factors to be considered when testing nanomaterials for genotoxicity with the comet assay. Mutagenesis 2015, 30:85–88. PubMed

Magdolenova Z, Lorenzo Y, Collins A, Dusinska M. Can standard genotoxicity tests be applied to nanoparticles? J Toxicol Environ Health A 2012, 75:800–806. PubMed

Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M. Can the comet assay be used reliably to detect nanoparticle‐induced genotoxicity? Environ Mol Mutagen 2015, 56:82–96. PubMed

Azqueta A, Meier S, Priestley C, Gutzkow KB, Brunborg G, Sallette J, Soussaline F, Collins A. The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis 2011, 26:393–399. PubMed

Wood DK, Weingeist DM, Bhatia SN, Engelward BP. Single cell trapping and DNA damage analysis using microwell arrays. Proc Natl Acad Sci USA 2010, 107:10008–10013. PubMed PMC

Watson C, Ge J, Cohen J, Pyrgiotakis G, Engelward BP, Demokritou P. High‐throughput screening platform for engineered nanoparticle‐mediated genotoxicity using CometChip technology. ACS Nano 2014, 8:2118–2133. PubMed PMC

Cowie H, Magdolenova Z, Saunders M, Drlickova M, Correia Carreira S, Halamoda Kenzaoi B, Gombau L, Guadagnini R, Lorenzo Y, Walker L, et al. Suitability of human and mammalian cells of different origin for the assessment of genotoxicity of metal and polymeric engineered nanoparticles. Nanotoxicology 2015, 9(Suppl 1):57–65. PubMed

Decordier I, Papine A, Plas G, Roesems S, Vande Loock K, Moreno‐Palomo J, Cemeli E, Anderson D, Fucic A, Marcos R, et al. Automated image analysis of cytokinesis‐blocked micronuclei: an adapted protocol and a validated scoring procedure for biomonitoring. Mutagenesis 2009, 24:85–93. PubMed

Fenech M, Kirsch‐Volders M, Rossnerova A, Sram R, Romm H, Bolognesi C, Ramakumar A, Soussaline F, Schunck C, Elhajouji A, et al. HUMN project initiative and review of validation, quality control and prospects for further development of automated micronucleus assays using image cytometry systems. Int J Hyg Environ Health 2013, 216:541–552. PubMed

Roemer E, Zenzen V, Conroy LL, Luedemann K, Dempsey R, Schunck C, Sticken ET. Automation of the in vitro micronucleus and chromosome aberration assay for the assessment of the genotoxicity of the particulate and gas–vapor phase of cigarette smoke. Toxicol Mech Methods 2015, 25:320–333. PubMed

Nusse M, Kramer J. Flow cytometric analysis of micronuclei found in cells after irradiation. Cytometry 1984, 5:20–25. PubMed

Bryce SM, Bemis JC, Avlasevich SL, Dertinger SD. In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutat Res 2007, 630:78–91. PubMed PMC

Bryce SM, Avlasevich SL, Bemis JC, Phonethepswath S, Dertinger SD. Miniaturized flow cytometric in vitro micronucleus assay represents an efficient tool for comprehensively characterizing genotoxicity dose–response relationships. Mutat Res 2010, 703:191–199. PubMed PMC

Bryce SM, Avlasevich SL, Bemis JC, Tate M, Walmsley RM, Saad F, Van Dijck K, De Boeck M, Van Goethem F, Lukamowicz‐Rajska M, et al. Flow cytometric 96‐well microplate‐based in vitro micronucleus assay with human TK6 cells: protocol optimization and transferability assessment. Environ Mol Mutagen 2013, 54:180–194. PubMed

Avlasevich S, Bryce S, De Boeck M, Elhajouji A, Van Goethem F, Lynch A, Nicolette J, Shi J, Dertinger S. Flow cytometric analysis of micronuclei in mammalian cell cultures: past, present and future. Mutagenesis 2011, 26:147–152. PubMed

Diaz D, Scott A, Carmichael P, Shi W, Costales C. Evaluation of an automated in vitro micronucleus assay in CHO‐K1 cells. Mutat Res 2007, 630:1–13. PubMed

Scott A, Malcomber S, Maskell S, Moore C, Windebank S, Diaz D, Carmichael P. An assessment of the performance of an automated scoring system (Cellomics) for the in vitro micronucleus assay in CHO‐K1 cells. Toxicology 2007, 231:111–112.

Mondal MS, Gabriels J, McGinnis C, Magnifico M, Marsilje TH, Urban L, Collis A, Bojanic D, Biller SA, Frieauff W, et al. High‐content micronucleus assay in genotoxicity profiling: initial‐stage development and some applications in the investigative/lead‐finding studies in drug discovery. Toxicol Sci 2010, 118:71–85. PubMed

Westerink WM, Schirris TJ, Horbach GJ, Schoonen WG. Development and validation of a high‐content screening in vitro micronucleus assay in CHO‐k1 and HepG2 cells. Mutat Res 2011, 724:7–21. PubMed

Voelcker N, Fenech M, Vecchio G, Anglin E, Sanderson B, Cooksley C, Sweetman M, Splinter J, Morris H. Development of an automated high‐throughput screening procedure for nanomaterials genotoxicity assessment. Safe Work Australia 2013.

Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y. γH2AX and cancer. Nat Rev Cancer 2008, 8:957–967. PubMed PMC

Mah LJ, El‐Osta A, Karagiannis TC. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 2010, 24:679–686. PubMed

Valdiglesias V, Costa C, Kilic G, Costa S, Pasaro E, Laffon B, Teixeira JP. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int 2013, 55:92–100. PubMed

Audebert M, Dolo L, Perdu E, Cravedi JP, Zalko D. Use of the γH2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines. Arch Toxicol 2011, 85:1463–1473. PubMed

O'Driscoll M, Jeggo PA. The role of double‐strand break repair – insights from human genetics. Nat Rev Genet 2006, 7:45–54. PubMed

McKinnon PJ, Caldecott KW. DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet 2007, 8:37–55. PubMed

Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 2008, 8:193–204. PubMed

Clingen PH, Wu JY, Miller J, Mistry N, Chin F, Wynne P, Prise KM, Hartley JA. Histone H2AX phosphorylation as a molecular pharmacological marker for DNA interstrand crosslink cancer chemotherapy. Biochem Pharmacol 2008, 76:19–27. PubMed

Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ, Parchment RE, Doroshow JH, Pommier Y. Histone γH2AX and poly(ADP‐ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res 2010, 16:4532–4542. PubMed PMC

Zhu L, Chang DW, Dai L, Hong Y. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 2007, 7:3592–3597. PubMed

Cveticanin J, Joksic G, Leskovac A, Petrovic S, Sobot AV, Neskovic O. Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells. Nanotechnology 2010, 21:015102. PubMed

Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol JP, Reilly RM. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X‐radiation. Breast Cancer Res Treat 2013, 137:81–91. PubMed

Msiska Z, Pacurari M, Mishra A, Leonard SS, Castranova V, Vallyathan V. DNA double‐strand breaks by asbestos, silica, and titanium dioxide: possible biomarker of carcinogenic potential? Am J Respir Cell Mol Biol 2010, 43:210–219. PubMed

Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 2009, 69:8784–8789. PubMed PMC

Toyooka T, Amano T, Ibuki Y. Titanium dioxide particles phosphorylate histone H2AX independent of ROS production. Mutat Res 2012, 742:84–91. PubMed

Bhogal N, Jalali F, Bristow RG. Microscopic imaging of DNA repair foci in irradiated normal tissues. Int J Radiat Biol 2009, 85:732–746. PubMed

Ivashkevich AN, Martin OA, Smith AJ, Redon CE, Bonner WM, Martin RF, Lobachevsky PN. γH2AX foci as a measure of DNA damage: a computational approach to automatic analysis. Mutat Res 2011, 711:49–60. PubMed PMC

Cai Z, Vallis KA, Reilly RM. Computational analysis of the number, area and density of γ‐H2AX foci in breast cancer cells exposed to (111)In‐DTPA‐hEGF or γ‐rays using Image‐J software. Int J Radiat Biol 2009, 85:262–271. PubMed

Hou YN, Lavaf A, Huang D, Peters S, Huq R, Friedrich V, Rosenstein BS, Kao J. Development of an automated γ‐H2AX immunocytochemistry assay. Radiat Res 2009, 171:360–367. PubMed

Roch‐Lefevre S, Mandina T, Voisin P, Gaetan G, Mesa JE, Valente M, Bonnesoeur P, Garcia O, Voisin P, Roy L. Quantification of γ‐H2AX foci in human lymphocytes: a method for biological dosimetry after ionizing radiation exposure. Radiat Res 2010, 174:185–194. PubMed

Jucha A, Wegierek‐Ciuk A, Koza Z, Lisowska H, Wojcik A, Wojewodzka M, Lankoff A. FociCounter: a freely available PC programme for quantitative and qualitative analysis of γ‐H2AX foci. Mutat Res 2010, 696:16–20. PubMed

Yip KW, Cuddy M, Pinilla C, Giulanotti M, Heynen‐Genel S, Matsuzawa S, Reed JC. A high‐content screening (HCS) assay for the identification of chemical inducers of PML oncogenic domains (PODs). J Biomol Screen 2011, 16:251–258. PubMed PMC

Grafstrom RC, Nymark P, Hongisto V, Spjuth O, Ceder R, Willighagen E, Hardy B, Kaski S, Kohonen P. Toward the replacement of animal experiments through the bioinformatics‐driven analysis of ‘omics’ data from human cell cultures. Altern Lab Anim 2015, 43:325–332. PubMed

Kohonen P, Ceder R, Smit I, Hongisto V, Myatt G, Hardy B, Spjuth O, Grafstrom R. Cancer biology, toxicology and alternative methods development go hand‐in‐hand. Basic Clin Pharmacol Toxicol 2014, 115:50–58. PubMed

Peck D, Crawford ED, Ross KN, Stegmaier K, Golub TR, Lamb J. A method for high‐throughput gene expression signature analysis. Genome Biol 2006, 7:R61. PubMed PMC

Andersen ME, McMullen PD, Krewski D. Developing tools for defining and establishing pathways of toxicity. Arch Toxicol 2015, 89:809–812. PubMed PMC

Duan Q, Flynn C, Niepel M, Hafner M, Muhlich JL, Fernandez NF, Rouillard AD, Tan CM, Chen EY, Golub TR, et al. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res 2014, 42:W449–W460. PubMed PMC

Foldbjerg R, Irving ES, Hayashi Y, Sutherland DS, Thorsen K, Autrup H, Beer C. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 2012, 130:145–157. PubMed

Kong L, Tuomela S, Hahne L, Ahlfors H, Yli‐Harja O, Fadeel B, Lahesmaa R, Autio R. NanoMiner—integrative human transcriptomics data resource for nanoparticle research. PLoS One 2013, 8:e68414. PubMed PMC

Feliu N, Kohonen P, Ji J, Zhang Y, Karlsson HL, Palmberg L, Nystrom A, Fadeel B. Next‐generation sequencing reveals low‐dose effects of cationic dendrimers in primary human bronchial epithelial cells. ACS Nano 2015, 9:146–163. PubMed

Afshari CA, Hamadeh HK, Bushel PR. The evolution of bioinformatics in toxicology: advancing toxicogenomics. Toxicol Sci 2011, 120(Suppl 1):S225–S237. PubMed PMC

Smalley JL, Gant TW, Zhang SD. Application of connectivity mapping in predictive toxicology based on gene‐expression similarity. Toxicology 2010, 268:143–146. PubMed

Gusenleitner D, Auerbach SS, Melia T, Gomez HF, Sherr DH, Monti S. Genomic models of short‐term exposure accurately predict long‐term chemical carcinogenicity and identify putative mechanisms of action. PLoS One 2014, 9:e102579. PubMed PMC

Lamb J. The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 2007, 7:54–60. PubMed

Choi JY, Ramachandran G, Kandlikar M. The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 2009, 43:3030–3034. PubMed

Szymanski P, Markowicz M, Mikiciuk‐Olasik E. Adaptation of high‐throughput screening in drug discovery‐toxicological screening tests. Int J Mol Sci 2012, 13:427–452. PubMed PMC

Rossnerova A, Spatova M, Schunck C, Sram RJ. Automated scoring of lymphocyte micronuclei by the MetaSystems Metafer image cytometry system and its application in studies of human mutagen sensitivity and biodosimetry of genotoxin exposure. Mutagenesis 2011, 26:169–175. PubMed

Buchser W, Collins M, Garyantes T, Guha R, Haney S, Lemmon V, Li Z, Trask OJ. Assay development guidelines for image‐based high content screening, high content analysis and high content imaging In: Sittampalam GS, Coussens NP, Nelson H, Arkin M, Auld D, Austin C, Bejcek B, Glicksman M, Inglese J, Iversen PW, et al., eds. Assay Guidance Manual. Bethesda, MD: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004. PubMed

Stone V, Nowack B, Baun A, van den Brink N, Kammer F, Dusinska M, Handy R, Hankin S, Hassellov M, Joner E, et al. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico‐chemical characterisation. Sci Total Environ 2010, 408:1745–1754. PubMed

Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 2012, 86:1123–1136. PubMed

Ruenraroengsak P, Novak P, Berhanu D, Thorley AJ, Valsami‐Jones E, Gorelik J, Korchev YE, Tetley TD. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine‐modified nanoparticles. Nanotoxicology 2012, 6:94–108. PubMed

Lunov O, Syrovets T, Loos C, Nienhaus GU, Mailander V, Landfester K, Rouis M, Simmet T. Amino‐functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 2011, 5:9648–9657. PubMed

Farrera C, Fadeel B. It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system. Eur J Pharm Biopharm 2015, 95:3–12. PubMed

Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 2005, 127:17604–17605. PubMed

Schrand AM, Huang H, Carlson C, Schlager JJ, Omacr Sawa E, Hussain SM, Dai L. Are diamond nanoparticles cytotoxic? J Phys Chem B 2007, 111:2–7. PubMed

Wang XZ, Yang Y, Li R, McGuinnes C, Adamson J, Megson IL, Donaldson K. Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles. Nanotoxicology 2014, 8:465–476. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...