High throughput toxicity screening and intracellular detection of nanomaterials
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
27273980
PubMed Central
PMC5215403
DOI
10.1002/wnan.1413
Knihovny.cz E-zdroje
- MeSH
- buněčné linie MeSH
- cytologické techniky MeSH
- intracelulární prostor chemie metabolismus MeSH
- lidé MeSH
- myši MeSH
- nanostruktury toxicita MeSH
- rychlé screeningové testy metody MeSH
- testy toxicity metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety-preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read-across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter-experimental variation, and makes substantial savings in time and cost. HTS/HCA approaches facilitate the classification of key biological indicators of NM-cell interactions. Validation of in vitro HTS tests is required, taking account of relevance to in vivo results. HTS/HCA approaches are needed to assess dose- and time-dependent toxicity, allowing prediction of in vivo adverse effects. Several HTS/HCA methods are being validated and applied for NM testing in the FP7 project NANoREG, including Label-free cellular screening of NM uptake, HCA, High throughput flow cytometry, Impedance-based monitoring, Multiplex analysis of secreted products, and genotoxicity methods-namely High throughput comet assay, High throughput in vitro micronucleus assay, and γH2AX assay. There are several technical challenges with HTS/HCA for NM testing, as toxicity screening needs to be coupled with characterization of NMs in exposure medium prior to the test; possible interference of NMs with HTS/HCA techniques is another concern. Advantages and challenges of HTS/HCA approaches in NM safety are discussed. WIREs Nanomed Nanobiotechnol 2017, 9:e1413. doi: 10.1002/wnan.1413 For further resources related to this article, please visit the WIREs website.
ANSES Fougères Laboratory Contaminant Toxicology Unit France
CIBER Epidemiología y Salud Pública ISCIII Spain
Comet Biotech AS and Department of Nutrition University of Oslo Norway
Department of Clinical Dentistry Faculty of Medicine and Dentistry University of Bergen Norway
Department of Electrical Engineering Faculty of Engineering Bergen University College Norway
GAIKER Technology Centre Bizkaia Science and Technology Park Zamudio Spain
Institute of Biophysics and Medical Physics University of Leipzig Leipzig Germany
Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
Institute of Experimental Medicine AS CR Prague Czech Republic
Nanomedicine Group Trinity Centre for Health Sciences Trinity College Dublin Dublin Ireland
Zobrazit více v PubMed
Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006, 311:622–627. PubMed
Donaldson K, Poland CA. Nanotoxicity: challenging the myth of nano‐specific toxicity. Curr Opin Biotechnol 2013, 24:724–734. PubMed
Cohen Y, Rallo R, Liu R, Liu HH. In silico analysis of nanomaterials hazard and risk. Acc Chem Res 2013, 46:802–812. PubMed
Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high‐throughput screening. Acc Chem Res 2013, 46:607–621. PubMed PMC
Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 2012, 258:151–165. PubMed
Dusinska M, Magdolenova Z, Fjellsbo LM. Toxicological aspects for nanomaterial in humans. Methods Mol Biol 2013, 948:1–12. PubMed
Dusinska M, Fjellsbø LM, Magdolenova Z, Ravnum S, Rinna A. Safety of nanomaterial in nanomedicine In: Hunter RJ, Preedy VR, eds. Nanomedicine in Health and Disease. Jersey, British Isles Enfield, New Hampshire: CRC Press; 2011, 203–226.
Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med 2004, 61:727–728. PubMed PMC
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 2008, 4:26–49. PubMed
George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S, Wang X, Zhang H, France B, Schoenfeld D, et al. Use of a high‐throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 2011, 5:1805–1817. PubMed PMC
Prina‐Mello A, Bashir M, Verma N, Namrata J, Volkov Y. Advanced methodologies and techniques for assessing nanomaterials toxicity from manufacturing to nanomedecine screening In: Nanotoxicology: Progress toward Nanomedicine. Boca Raton, Florida: CRC Press, Taylor Francis Group; 2014, 155–176.
Prina‐Mello A, Crosbie‐Staunton K, Salas G, del Puerto MM, Volkov Y. Multiparametric toxicity evaluation of SPIONs by high content screening technique: identification of biocompatible multifunctional nanoparticles for nanomedicine. IEEE Trans Magn 2013, 49:377–382.
Mohamed BM, Verma NK, Davies AM, McGowan A, Crosbie‐Staunton K, Prina‐Mello A, Kelleher D, Botting CH, Causey CP, Thompson PR, et al. Citrullination of proteins: a common post‐translational modification pathway induced by different nanoparticles in vitro and in vivo. Nanomedicine (Lond) 2012, 7:1181–1195. PubMed PMC
Fischer HC, Fournier‐Bidoz S, Chan WCW, Pang KS. Quantitative detection of engineered nanoparticles in tissues and organs: an investigation of efficacy and linear dynamic ranges using ICP‐AES. Nanobiotechnology 2007, 3:46–54.
Albanese A, Tsoi KM, Chan WC. Simultaneous quantification of cells and nanomaterials by inductive‐coupled plasma techniques. J Lab Autom 2013, 18:99–104. PubMed
Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 2010, 30:212–217. PubMed
Zhou X, Dorn M, Vogt J, Spemann D, Yu W, Mao Z, Estrela‐Lopis I, Donath E, Gao C. A quantitative study of the intracellular concentration of graphene/noble metal nanoparticle composites and their cytotoxicity. Nanoscale 2014, 6:8535–8542. PubMed
Laborda F, Bolea E, Jimenez‐Lamana J. Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 2014, 86:2270–2278. PubMed
Allouni ZE, Gjerdet NR, Cimpan MR, Hol PJ. The effect of blood protein adsorption on cellular uptake of anatase TiO2 nanoparticles. Int J Nanomedicine 2015, 10:687–695. PubMed PMC
Reinert T, Andrea T, Barapatre N, Hohlweg M, Koal T, Larisch W, Reinert A, Spemann D, Vogt J, Werner R, et al. Biomedical research at LIPSION – present state and future developments. Nucl Instrum Methods Phys Res B: Beam Interact Mater Atoms 2011, 269:2254–2259.
Tanaka N, Kimura H, Faried A, Sakai M, Sano A, Inose T, Sohda M, Okada K, Nakajima M, Miyazaki T, et al. Quantitative analysis of cisplatin sensitivity of human esophageal squamous cancer cell lines using in‐air micro‐PIXE. Cancer Sci 2010, 101:1487–1492. PubMed PMC
Llop J, Estrela‐Lopis I, Ziolo RF, Gonzalez A, Fleddermann J, Dorn M, Gomez Vallejo V, Simon‐Vazquez R, Donath E, Mao Z, et al. Uptake, biological fate, and toxicity of metal oxide nanoparticles. Part Part Syst Charact 2014, 31:24–35.
Gatti AM. Biocompatibility of micro‐ and nano‐particles in the colon. Part II. Biomaterials 2004, 25:385–392. PubMed
Zelenik K, Kukutschova J, Dvorackova J, Bielnikova H, Peikertova P, Cabalova L, Kominek P. Possible role of nano‐sized particles in chronic tonsillitis and tonsillar carcinoma: a pilot study. Eur Arch Otorhinolaryngol 2013, 270:705–709. PubMed
Pichler BJ, Kolb A, Nagele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 2010, 51:333–336. PubMed
Perez‐Campana C, Gomez‐Vallejo V, Puigivila M, Martin A, Calvo‐Fernandez T, Moya SE, Ziolo RF, Reese T, Llop J. Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano 2013, 7:3498–3505. PubMed
Taylor A, Herrmann A, Moss D, See V, Davies K, Williams SR, Murray P. Assessing the efficacy of nano‐ and micro‐sized magnetic particles as contrast agents for MRI cell tracking. PLoS One 2014, 9:e100259. PubMed PMC
Monteiro‐Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 2011, 123:264–280. PubMed
Nemmar A, Al‐Maskari S, Ali BH, Al‐Amri IS. Cardiovascular and lung inflammatory effects induced by systemically administered diesel exhaust particles in rats. Am J Physiol Lung Cell Mol Physiol 2007, 292:L664–L670. PubMed
Takenaka S, Karg E, Kreyling WG, Lentner B, Moller W, Behnke‐Semmler M, Jennen L, Walch A, Michalke B, Schramel P, et al. Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol 2006, 18:733–740. PubMed
Heymann JA, Hayles M, Gestmann I, Giannuzzi LA, Lich B, Subramaniam S. Site‐specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol 2006, 155:63–73. PubMed PMC
Haase A, Arlinghaus HF, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F, Galla S, Plendl J, Goetz ME, et al. Application of laser postionization secondary neutral mass spectrometry/time‐of‐flight secondary ion mass spectrometry in nanotoxicology: visualization of nanosilver in human macrophages and cellular responses. ACS Nano 2011, 5:3059–3068. PubMed
Lee PL, Chen BC, Gollavelli G, Shen SY, Yin YS, Lei SL, Jhang CL, Lee WR, Ling YC. Development and validation of TOF‐SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells. J Hazard Mater 2014, 277:3–12. PubMed
Perna G, Lastella M, Lasalvia M, Mezzenga E, Capozzi V. Raman spectroscopy and atomic force microscopy study of cellular damage in human keratinocytes treated with HgCl2 . J Mol Struct 2007, 834–836:182–187.
Pyrgiotakis G, Kundakcioglu OE, Pardalos PM, Moudgil BM. Raman spectroscopy and support vector machines for quick toxicological evaluation of titania nanoparticles. J Raman Spectrosc 2011, 42:1222–1231.
Zoladek A, Pascut FC, Patel P, Notingher I. Non‐invasive time‐course imaging of apoptotic cells by confocal Raman micro‐spectroscopy. J Raman Spectrosc 2011, 42:251–258.
Uzunbajakava N, Lenferink A, Kraan Y, Volokhina E, Vrensen G, Greve J, Otto C. Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophys J 2003, 84:3968–3981. PubMed PMC
Krafft C, Knetschke T, Funk RH, Salzer R. Studies on stress‐induced changes at the subcellular level by Raman microspectroscopic mapping. Anal Chem 2006, 78:4424–4429. PubMed
Owen CA, Selvakumaran J, Notingher I, Jell G, Hench LL, Stevens MM. In vitro toxicology evaluation of pharmaceuticals using Raman micro‐spectroscopy. J Cell Biochem 2006, 99:178–186. PubMed
le Roux K, Prinsloo LC, Hussein AA, Lall N. A micro‐Raman spectroscopic investigation of leukemic U‐937 cells treated with Crotalaria agatiflora Schweinf and the isolated compound madurensine. Spectrochim Acta A Mol Biomol Spectrosc 2012, 95:547–554. PubMed
Sinclair MB, Haaland DM, Timlin JA, Jones HD. Hyperspectral confocal microscope. Appl Opt 2006, 45:6283–6291. PubMed
Matthaus C, Chernenko T, Newmark JA, Warner CM, Diem M. Label‐free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophys J 2007, 93:668–673. PubMed PMC
Klein K, Gigler AM, Aschenbrenner T, Monetti R, Bunk W, Jamitzky F, Morfill G, Stark RW, Schlegel J. Label‐free live‐cell imaging with confocal Raman microscopy. Biophys J 2012, 102:360–368. PubMed PMC
Matthaus C, Kale A, Chernenko T, Torchilin V, Diem M. New ways of imaging uptake and intracellular fate of liposomal drug carrier systems inside individual cells, based on Raman microscopy. Mol Pharm 2008, 5:287–293. PubMed PMC
Romero G, Estrela‐Lopis I, Zhou J, Rojas E, Franco A, Espinel CS, Fernandez AG, Gao C, Donath E, Moya SE. Surface engineered Poly(lactide‐co‐glycolide) nanoparticles for intracellular delivery: uptake and cytotoxicity—a confocal raman microscopic study. Biomacromolecules 2010, 11:2993–2999. PubMed
Romero G, Ochoteco O, Sanz DJ, Estrela‐Lopis I, Donath E, Moya SE. Poly(lactide‐co‐glycolide) nanoparticles, layer by layer engineered for the sustainable delivery of antiTNF‐α. Macromol Biosci 2013, 13:903–912. PubMed
Romero G, Estrela‐Lopis I, Castro‐Hartmann P, Rojas E, Llarena I, Sanz D, Donath E, Moya SE. Stepwise surface tailoring of carbon nanotubes with polyelectrolyte brushes and lipid layers to control their intracellular distribution and “in vitro” toxicity. Soft Matter 2011, 7:6883–6890.
Estrela‐Lopis I, Romero G, Rojas E, Moya SE, Donath E. Nanoparticle uptake and their co‐localization with cell compartments – a confocal Raman microscopy study at single cell level. J Phys Conf Ser 2011, 304:012017.
Worle‐Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006, 6:1261–1268. PubMed
Luque‐Garcia JL, Cabezas‐Sanchez P, Anunciacao DS, Camara C. Analytical and bioanalytical approaches to unravel the selenium‐mercury antagonism: a review. Anal Chim Acta 2013, 801:1–13. PubMed
Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze‐Isfort C, Gobbert C, Voetz M, Hardinghaus F, Schnekenburger J. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 2011, 8:9. PubMed PMC
Park EJ, Park K. Oxidative stress and pro‐inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 2009, 184:18–25. PubMed
Yeon JH, Park JK. Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip. Anal Biochem 2005, 341:308–315. PubMed
Ceriotti L, Ponti J, Colpo P, Sabbioni E, Rossi F. Assessment of cytotoxicity by impedance spectroscopy. Biosens Bioelectron 2007, 22:3057–3063. PubMed
Hondroulis E, Liu C, Li CZ. Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay. Nanotechnology 2010, 21:315103. PubMed
Monteiro‐Riviere NA, Inman AO, Zhang LW. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 2009, 234:222–235. PubMed
Monteiro‐Riviere NA, Inman AO. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 2006, 44:1070–1078.
Cimpan M, Mordal T, Allouni Z, Pliquett U, Cimpan E. An impedance‐based high‐throughput method for evaluating the cytotoxicity of nanoparticles. J Phys Conf Ser 2013, 429:012026. doi:10.1088/1742-6596/429/1/012026. DOI
Walker NJ, Bucher JR. A 21st century paradigm for evaluating the health hazards of nanoscale materials? Toxicol Sci 2009, 110:251–254. PubMed PMC
Feliu N, Fadeel B. Nanotoxicology: no small matter. Nanoscale 2010, 2:2514–2520. PubMed
Guadagnini R, Moreau K, Hussain S, Marano F, Boland S. Toxicity evaluation of engineered nanoparticles for medical applications using pulmonary epithelial cells. Nanotoxicology 2015, 9:25–32. PubMed
Guadagnini R, Halamoda Kenzaoui B, Walker L, Pojana G, Magdolenova Z, Bilanicova D, Saunders M, Juillerat‐Jeanneret L, Marcomini A, Huk A, et al. Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology 2015, 9(Suppl 1):13–24. PubMed
Urcan E, Haertel U, Styllou M, Hickel R, Scherthan H, Reichl FX. Real‐time xCELLigence impedance analysis of the cytotoxicity of dental composite components on human gingival fibroblasts. Dent Mater 2010, 26:51–58. PubMed
Wegener J, Keese CR, Giaever I. Electric Cell–Substrate Impedance Sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 2000, 259:158–166. PubMed
Thomas N. High‐content screening: a decade of evolution. J Biomol Screen 2010, 15:1–9. PubMed
Hoffman AF, Garippa RJ. A pharmaceutical company user's perspective on the potential of high content screening in drug discovery. Methods Mol Biol 2007, 356:19–31. PubMed
Trask OJ Jr, Baker A, Williams RG, Nickischer D, Kandasamy R, Laethem C, Johnston PA, Johnston PA. Assay development and case history of a 32 K‐biased library high‐content MK2‐EGFP translocation screen to identify p38 mitogen‐activated protein kinase inhibitors on the ArrayScan 3.1 imaging platform. Methods Enzymol 2006, 414:419–439. PubMed
Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D. Cellular imaging predictions of clinical drug‐induced liver injury. Toxicol Sci 2008, 105:97–105. PubMed
Anguissola S, Garry D, Salvati A, O'Brien PJ, Dawson KA. High content analysis provides mechanistic insights on the pathways of toxicity induced by amine‐modified polystyrene nanoparticles. PLoS One 2014, 9:e108025. PubMed PMC
Jan E, Byrne SJ, Cuddihy M, Davies AM, Volkov Y, Gun'ko YK, Kotov NA. High‐content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2008, 2:928–938. PubMed
Harris G, Palosaari T, Magdolenova Z, Mennecozzi M, Gineste JM, Saavedra L, Milcamps A, Huk A, Collins AR, Dusinska M, et al. Iron oxide nanoparticle toxicity testing using high‐throughput analysis and high‐content imaging. Nanotoxicology 2015, 9:87–94. PubMed
Lin S, Zhao Y, Xia T, Meng H, Ji Z, Liu R, George S, Xiong S, Wang X, Zhang H, et al. High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano 2011, 5:7284–7295. PubMed PMC
Damoiseaux R, George S, Li M, Pokhrel S, Ji Z, France B, Xia T, Suarez E, Rallo R, Madler L, et al. No time to lose—high throughput screening to assess nanomaterial safety. Nanoscale 2011, 3:1345–1360. PubMed PMC
Edwards BS, Young SM, Saunders MJ, Bologa C, Oprea TI, Ye RD, Prossnitz ER, Graves SW, Sklar LA. High‐throughput flow cytometry for drug discovery. Expert Opin Drug Discov 2007, 2:685–696. PubMed
Peluso J, Tabaka‐Moreira H, Taquet N, Dumont S, Muller CD, Reimund J‐M. Can flow cytometry play a part in cell based high‐content screening? Cytometry A 2007, 71A:901–904. PubMed
Goñi‐de‐Cerio F, Mariani V, Cohen D, Madi L, Thevenot J, Oliviera H, Uboldi C, Giudetti G. Biocompatibility study of two diblock copolymeric NPs for biomedical applications by in vitro toxicity testing. J NP Res 2013, 11:1–17.
Errico C, Goñi‐de‐Cerio F, Alderighi M, Ferri M, Suarez‐Merino B, Soroka Y, Frušić‐Zlotkin M, Chiellini F. Retinyl palmitate–loaded poly(lactide‐co‐glycolide) nanoparticles for the topical treatment of skin diseases. J Bioact Compat Polym 2012, 27:604–620.
Zucker RM, Daniel KM. Detection of TiO2 nanoparticles in cells by flow cytometry. Methods Mol Biol 2012, 906:497–509. PubMed
Zucker RM, Massaro EJ, Sanders KM, Degn LL, Boyes WK. Detection of TiO2 nanoparticles in cells by flow cytometry. Cytometry A 2010, 77:677–685. PubMed
Schoelermann J, Burtey A, Allouni ZE, Gerdes H‐H, Cimpan MR. Contact‐dependent transfer of TiO2 nanoparticles between mammalian cells. Nanotoxicology 2016, 10:204–215. PubMed
Zucker RM, Daniel KM, Massaro EJ, Karafas SJ, Degn LL, Boyes WK. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far‐red fluorescence. Cytometry A 2013, 83:962–972. PubMed
Paget V, Moche H, Kortulewski T, Grall R, Irbah L, Nesslany F, Chevillard S. Human cell line‐dependent WC‐Co nanoparticle cytotoxicity and genotoxicity: a key role of ROS production. Toxicol Sci 2015, 143:385–397. PubMed
Grall R, Girard H, Saad L, Petit T, Gesset C, Combis‐Schlumberger M, Paget V, Delic J, Arnault JC, Chevillard S. Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. Biomaterials 2015, 61:290–298. PubMed
Vranic S, Boggetto N, Contremoulins V, Mornet S, Reinhardt N, Marano F, Baeza‐Squiban A, Boland S. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part Fibre Toxicol 2013, 10:2. PubMed PMC
Giaever I, Keese CR. A morphological biosensor for mammalian cells. Nature 1993, 366:591–592. PubMed
Coffman FD, Cohen S. Impedance measurements in the biomedical sciences. Stud Health Technol Inform 2013, 185:185–205. PubMed
Lingwood BE. Bioelectrical impedance analysis for assessment of fluid status and body composition in neonates—the good, the bad and the unknown. Eur J Clin Nutr 2013, 67(Suppl 1):S28–S33. PubMed
Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gomez J, Lilienthal Heitmann B, Kent‐Smith L, Melchior JC, Pirlich M, et al. Bioelectrical impedance analysis‐part II: utilization in clinical practice. Clin Nutr 2004, 23:1430–1453. PubMed
Pliquett U. Bioimpedance: a review for food processing. Food Eng Rev 2010, 2:74–94.
Lukaski HC. Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr 2013, 67(Suppl 1):S2–S9. PubMed
Xiao C, Lachance B, Sunahara G, Luong JH. Assessment of cytotoxicity using electric cell‐substrate impedance sensing: concentration and time response function approach. Anal Chem 2002, 74:5748–5753. PubMed
Irelan JT, Wu MJ, Morgan J, Ke N, Xi B, Wang X, Xu X, Abassi YA. Rapid and quantitative assessment of cell quality, identity, and functionality for cell‐based assays using real‐time cellular analysis. J Biomol Screen 2011, 16:313–322. PubMed
Pan T, Huang B, Zhang W, Gabos S, Huang DY, Devendran V. Cytotoxicity assessment based on the AUC50 using multi‐concentration time‐dependent cellular response curves. Anal Chim Acta 2013, 764:44–52. PubMed
Pan T, Khare S, Ackah F, Huang B, Zhang W, Gabos S, Jin C, Stampfl M. In vitro cytotoxicity assessment based on KC(50) with real‐time cell analyzer (RTCA) assay. Comput Biol Chem 2013, 47:113–120. PubMed
Kavlock R, Chandler K, Houck K, Hunter S, Judson R, Kleinstreuer N, Knudsen T, Martin M, Padilla S, Reif D, et al. Update on EPA's ToxCast program: providing high throughput decision support tools for chemical risk management. Chem Res Toxicol 2012, 25:1287–1302. PubMed
Xing JZ, Zhu L, Jackson JA, Gabos S, Sun XJ, Wang XB, Xu X. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol 2005, 18:154–161. PubMed
Ke N, Wang X, Xu X, Abassi YA. The xCELLigence system for real‐time and label‐free monitoring of cell viability. Methods Mol Biol 2011, 740:33–43. PubMed
Otero‐Gonzalez L, Sierra‐Alvarez R, Boitano S, Field JA. Application and validation of an impedance‐based real time cell analyzer to measure the toxicity of nanoparticles impacting human bronchial epithelial cells. Environ Sci Technol 2012, 46:10271–10278. PubMed
Paget V, Sergent JA, Grall R, Altmeyer‐Morel S, Girard HA, Petit T, Gesset C, Mermoux M, Bergonzo P, Arnault JC, et al. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology 2014, 8(Suppl 1):46–56. PubMed
Paget V, Dekali S, Kortulewski T, Grall R, Gamez C, Blazy K, Aguerre‐Chariol O, Chevillard S, Braun A, Rat P, et al. Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages. PLoS One 2015, 10:e0123297. PubMed PMC
Scrace S, O'Neill E, Hammond EM, Pires IM. Use of the xCELLigence system for real‐time analysis of changes in cellular motility and adhesion in physiological conditions. Methods Mol Biol 2013, 1046:295–306. PubMed
Cheung KC, Di Berardino M, Schade‐Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, Mittag A, Tarnok A. Microfluidic impedance‐based flow cytometry. Cytometry A 2010, 77:648–666. PubMed
Moe B, Gabos S, Li XF. Real‐time cell‐microelectronic sensing of nanoparticle‐induced cytotoxic effects. Anal Chim Acta 2013, 789:83–90. PubMed
Heileman K, Daoud J, Tabrizian M. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosens Bioelectron 2013, 49:348–359. PubMed
Ponti J, Ceriotti L, Munaro B, Farina M, Munari A, Whelan M, Colpo P, Sabbioni E, Rossi F. Comparison of impedance‐based sensors for cell adhesion monitoring and in vitro methods for detecting cytotoxicity induced by chemicals. Altern Lab Anim 2006, 34:515–525. PubMed
Kustermann S, Boess F, Buness A, Schmitz M, Watzele M, Weiser T, Singer T, Suter L, Roth A. A label‐free, impedance‐based real time assay to identify drug‐induced toxicities and differentiate cytostatic from cytotoxic effects. Toxicol In Vitro 2013, 27:1589–1595. PubMed
Moodley K, Angel CE, Glass M, Graham ES. Real‐time profiling of NK cell killing of human astrocytes using xCELLigence technology. J Neurosci Methods 2011, 200:173–180. PubMed
Fang R, Qiao S, Liu Y, Meng Q, Chen X, Song B, Hou X, Tian W. Sustained co‐delivery of BIO and IGF‐1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts. Int J Nanomedicine 2015, 10:4691–4703. PubMed PMC
Song H, Zhang J, Wang W, Huang P, Zhang Y, Liu J, Li C, Kong D. Acid‐responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin‐1 receptor‐mediated targeted drug delivery. Colloids Surf B Biointerfaces 2015, 136:365–374. PubMed
Wang T, Hu N, Cao J, Wu J, Su K, Wang P. A cardiomyocyte‐based biosensor for antiarrhythmic drug evaluation by simultaneously monitoring cell growth and beating. Biosens Bioelectron 2013, 49:9–13. PubMed
Li JM, Zhao MX, Su H, Wang YY, Tan CP, Ji LN, Mao ZW. Multifunctional quantum‐dot‐based siRNA delivery for HPV18 E6 gene silence and intracellular imaging. Biomaterials 2011, 32:7978–7987. PubMed
Li JM, Wang YY, Zhao MX, Tan CP, Li YQ, Le XY, Ji LN, Mao ZW. Multifunctional QD‐based co‐delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real‐time tracking. Biomaterials 2012, 33:2780–2790. PubMed
Sun M, Fu H, Cheng H, Cao Q, Zhao Y, Mou X, Zhang X, Liu X, Ke Y. A dynamic real‐time method for monitoring epithelial barrier function in vitro. Anal Biochem 2012, 425:96–103. PubMed
Diemert S, Dolga AM, Tobaben S, Grohm J, Pfeifer S, Oexler E, Culmsee C. Impedance measurement for real time detection of neuronal cell death. J Neurosci Methods 2012, 203:69–77. PubMed
Val S, Hussain S, Boland S, Hamel R, Baeza‐Squiban A, Marano F. Carbon black and titanium dioxide nanoparticles induce pro‐inflammatory responses in bronchial epithelial cells: need for multiparametric evaluation due to adsorption artifacts. Inhal Toxicol 2009, 21(Suppl 1):115–122. PubMed
Turci F, Ghibaudi E, Colonna M, Boscolo B, Fenoglio I, Fubini B. An integrated approach to the study of the interaction between proteins and nanoparticles. Langmuir 2010, 26:8336–8346. PubMed
Leng SX, McElhaney JE, Walston JD, Xie D, Fedarko NS, Kuchel GA. ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci 2008, 63:879–884. PubMed PMC
Purohit S, Sharma A, She JX. Luminex and other multiplex high throughput technologies for the identification of, and host response to, environmental triggers of type 1 diabetes. Biomed Res Int 2015, 2015:326918. PubMed PMC
Ghosh R, Singh LC, Shohet JM, Gunaratne PH. A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 2013, 34:807–816. PubMed
Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013, 10:831–847. PubMed PMC
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1:325–327. PubMed
Leite PE, Pereira MR, do Nascimento Santos CA, Campos AP, Esteves TM, Granjeiro JM. Gold nanoparticles do not induce myotube cytotoxicity but increase the susceptibility to cell death. Toxicol In Vitro 2015, 29:819–827. PubMed
Dusinska M, Boland S, Saunders M, Juillerat‐Jeanneret L, Tran L, Pojana G, Marcomini A, Volkovova K, Tulinska J, Knudsen LE, et al. Towards an alternative testing strategy for nanomaterials used in nanomedicine: lessons from NanoTEST. Nanotoxicology 2015, 9(Suppl 1):118–132. PubMed
Azqueta A, Gutzkow KB, Priestley CC, Meier S, Walker JS, Brunborg G, Collins AR. A comparative performance test of standard, medium‐ and high‐throughput comet assays. Toxicol In Vitro 2013, 27:768–773. PubMed
Gutzkow KB, Langleite TM, Meier S, Graupner A, Collins AR, Brunborg G. High‐throughput comet assay using 96 minigels. Mutagenesis 2013, 28:333–340. PubMed
Huk A, Izak‐Nau E, Reidy B, Boyles M, Duschl A, Lynch I, Dusinska M. Is the toxic potential of nanosilver dependent on its size? Part Fibre Toxicol 2014, 11:65. PubMed PMC
Huk A, Collins AR, El Yamani N, Porredon C, Azqueta A, de Lapuente J, Dusinska M. Critical factors to be considered when testing nanomaterials for genotoxicity with the comet assay. Mutagenesis 2015, 30:85–88. PubMed
Magdolenova Z, Lorenzo Y, Collins A, Dusinska M. Can standard genotoxicity tests be applied to nanoparticles? J Toxicol Environ Health A 2012, 75:800–806. PubMed
Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M. Can the comet assay be used reliably to detect nanoparticle‐induced genotoxicity? Environ Mol Mutagen 2015, 56:82–96. PubMed
Azqueta A, Meier S, Priestley C, Gutzkow KB, Brunborg G, Sallette J, Soussaline F, Collins A. The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis 2011, 26:393–399. PubMed
Wood DK, Weingeist DM, Bhatia SN, Engelward BP. Single cell trapping and DNA damage analysis using microwell arrays. Proc Natl Acad Sci USA 2010, 107:10008–10013. PubMed PMC
Watson C, Ge J, Cohen J, Pyrgiotakis G, Engelward BP, Demokritou P. High‐throughput screening platform for engineered nanoparticle‐mediated genotoxicity using CometChip technology. ACS Nano 2014, 8:2118–2133. PubMed PMC
Cowie H, Magdolenova Z, Saunders M, Drlickova M, Correia Carreira S, Halamoda Kenzaoi B, Gombau L, Guadagnini R, Lorenzo Y, Walker L, et al. Suitability of human and mammalian cells of different origin for the assessment of genotoxicity of metal and polymeric engineered nanoparticles. Nanotoxicology 2015, 9(Suppl 1):57–65. PubMed
Decordier I, Papine A, Plas G, Roesems S, Vande Loock K, Moreno‐Palomo J, Cemeli E, Anderson D, Fucic A, Marcos R, et al. Automated image analysis of cytokinesis‐blocked micronuclei: an adapted protocol and a validated scoring procedure for biomonitoring. Mutagenesis 2009, 24:85–93. PubMed
Fenech M, Kirsch‐Volders M, Rossnerova A, Sram R, Romm H, Bolognesi C, Ramakumar A, Soussaline F, Schunck C, Elhajouji A, et al. HUMN project initiative and review of validation, quality control and prospects for further development of automated micronucleus assays using image cytometry systems. Int J Hyg Environ Health 2013, 216:541–552. PubMed
Roemer E, Zenzen V, Conroy LL, Luedemann K, Dempsey R, Schunck C, Sticken ET. Automation of the in vitro micronucleus and chromosome aberration assay for the assessment of the genotoxicity of the particulate and gas–vapor phase of cigarette smoke. Toxicol Mech Methods 2015, 25:320–333. PubMed
Nusse M, Kramer J. Flow cytometric analysis of micronuclei found in cells after irradiation. Cytometry 1984, 5:20–25. PubMed
Bryce SM, Bemis JC, Avlasevich SL, Dertinger SD. In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutat Res 2007, 630:78–91. PubMed PMC
Bryce SM, Avlasevich SL, Bemis JC, Phonethepswath S, Dertinger SD. Miniaturized flow cytometric in vitro micronucleus assay represents an efficient tool for comprehensively characterizing genotoxicity dose–response relationships. Mutat Res 2010, 703:191–199. PubMed PMC
Bryce SM, Avlasevich SL, Bemis JC, Tate M, Walmsley RM, Saad F, Van Dijck K, De Boeck M, Van Goethem F, Lukamowicz‐Rajska M, et al. Flow cytometric 96‐well microplate‐based in vitro micronucleus assay with human TK6 cells: protocol optimization and transferability assessment. Environ Mol Mutagen 2013, 54:180–194. PubMed
Avlasevich S, Bryce S, De Boeck M, Elhajouji A, Van Goethem F, Lynch A, Nicolette J, Shi J, Dertinger S. Flow cytometric analysis of micronuclei in mammalian cell cultures: past, present and future. Mutagenesis 2011, 26:147–152. PubMed
Diaz D, Scott A, Carmichael P, Shi W, Costales C. Evaluation of an automated in vitro micronucleus assay in CHO‐K1 cells. Mutat Res 2007, 630:1–13. PubMed
Scott A, Malcomber S, Maskell S, Moore C, Windebank S, Diaz D, Carmichael P. An assessment of the performance of an automated scoring system (Cellomics) for the in vitro micronucleus assay in CHO‐K1 cells. Toxicology 2007, 231:111–112.
Mondal MS, Gabriels J, McGinnis C, Magnifico M, Marsilje TH, Urban L, Collis A, Bojanic D, Biller SA, Frieauff W, et al. High‐content micronucleus assay in genotoxicity profiling: initial‐stage development and some applications in the investigative/lead‐finding studies in drug discovery. Toxicol Sci 2010, 118:71–85. PubMed
Westerink WM, Schirris TJ, Horbach GJ, Schoonen WG. Development and validation of a high‐content screening in vitro micronucleus assay in CHO‐k1 and HepG2 cells. Mutat Res 2011, 724:7–21. PubMed
Voelcker N, Fenech M, Vecchio G, Anglin E, Sanderson B, Cooksley C, Sweetman M, Splinter J, Morris H. Development of an automated high‐throughput screening procedure for nanomaterials genotoxicity assessment. Safe Work Australia 2013.
Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y. γH2AX and cancer. Nat Rev Cancer 2008, 8:957–967. PubMed PMC
Mah LJ, El‐Osta A, Karagiannis TC. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 2010, 24:679–686. PubMed
Valdiglesias V, Costa C, Kilic G, Costa S, Pasaro E, Laffon B, Teixeira JP. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int 2013, 55:92–100. PubMed
Audebert M, Dolo L, Perdu E, Cravedi JP, Zalko D. Use of the γH2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines. Arch Toxicol 2011, 85:1463–1473. PubMed
O'Driscoll M, Jeggo PA. The role of double‐strand break repair – insights from human genetics. Nat Rev Genet 2006, 7:45–54. PubMed
McKinnon PJ, Caldecott KW. DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet 2007, 8:37–55. PubMed
Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 2008, 8:193–204. PubMed
Clingen PH, Wu JY, Miller J, Mistry N, Chin F, Wynne P, Prise KM, Hartley JA. Histone H2AX phosphorylation as a molecular pharmacological marker for DNA interstrand crosslink cancer chemotherapy. Biochem Pharmacol 2008, 76:19–27. PubMed
Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ, Parchment RE, Doroshow JH, Pommier Y. Histone γH2AX and poly(ADP‐ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res 2010, 16:4532–4542. PubMed PMC
Zhu L, Chang DW, Dai L, Hong Y. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 2007, 7:3592–3597. PubMed
Cveticanin J, Joksic G, Leskovac A, Petrovic S, Sobot AV, Neskovic O. Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells. Nanotechnology 2010, 21:015102. PubMed
Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol JP, Reilly RM. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X‐radiation. Breast Cancer Res Treat 2013, 137:81–91. PubMed
Msiska Z, Pacurari M, Mishra A, Leonard SS, Castranova V, Vallyathan V. DNA double‐strand breaks by asbestos, silica, and titanium dioxide: possible biomarker of carcinogenic potential? Am J Respir Cell Mol Biol 2010, 43:210–219. PubMed
Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 2009, 69:8784–8789. PubMed PMC
Toyooka T, Amano T, Ibuki Y. Titanium dioxide particles phosphorylate histone H2AX independent of ROS production. Mutat Res 2012, 742:84–91. PubMed
Bhogal N, Jalali F, Bristow RG. Microscopic imaging of DNA repair foci in irradiated normal tissues. Int J Radiat Biol 2009, 85:732–746. PubMed
Ivashkevich AN, Martin OA, Smith AJ, Redon CE, Bonner WM, Martin RF, Lobachevsky PN. γH2AX foci as a measure of DNA damage: a computational approach to automatic analysis. Mutat Res 2011, 711:49–60. PubMed PMC
Cai Z, Vallis KA, Reilly RM. Computational analysis of the number, area and density of γ‐H2AX foci in breast cancer cells exposed to (111)In‐DTPA‐hEGF or γ‐rays using Image‐J software. Int J Radiat Biol 2009, 85:262–271. PubMed
Hou YN, Lavaf A, Huang D, Peters S, Huq R, Friedrich V, Rosenstein BS, Kao J. Development of an automated γ‐H2AX immunocytochemistry assay. Radiat Res 2009, 171:360–367. PubMed
Roch‐Lefevre S, Mandina T, Voisin P, Gaetan G, Mesa JE, Valente M, Bonnesoeur P, Garcia O, Voisin P, Roy L. Quantification of γ‐H2AX foci in human lymphocytes: a method for biological dosimetry after ionizing radiation exposure. Radiat Res 2010, 174:185–194. PubMed
Jucha A, Wegierek‐Ciuk A, Koza Z, Lisowska H, Wojcik A, Wojewodzka M, Lankoff A. FociCounter: a freely available PC programme for quantitative and qualitative analysis of γ‐H2AX foci. Mutat Res 2010, 696:16–20. PubMed
Yip KW, Cuddy M, Pinilla C, Giulanotti M, Heynen‐Genel S, Matsuzawa S, Reed JC. A high‐content screening (HCS) assay for the identification of chemical inducers of PML oncogenic domains (PODs). J Biomol Screen 2011, 16:251–258. PubMed PMC
Grafstrom RC, Nymark P, Hongisto V, Spjuth O, Ceder R, Willighagen E, Hardy B, Kaski S, Kohonen P. Toward the replacement of animal experiments through the bioinformatics‐driven analysis of ‘omics’ data from human cell cultures. Altern Lab Anim 2015, 43:325–332. PubMed
Kohonen P, Ceder R, Smit I, Hongisto V, Myatt G, Hardy B, Spjuth O, Grafstrom R. Cancer biology, toxicology and alternative methods development go hand‐in‐hand. Basic Clin Pharmacol Toxicol 2014, 115:50–58. PubMed
Peck D, Crawford ED, Ross KN, Stegmaier K, Golub TR, Lamb J. A method for high‐throughput gene expression signature analysis. Genome Biol 2006, 7:R61. PubMed PMC
Andersen ME, McMullen PD, Krewski D. Developing tools for defining and establishing pathways of toxicity. Arch Toxicol 2015, 89:809–812. PubMed PMC
Duan Q, Flynn C, Niepel M, Hafner M, Muhlich JL, Fernandez NF, Rouillard AD, Tan CM, Chen EY, Golub TR, et al. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res 2014, 42:W449–W460. PubMed PMC
Foldbjerg R, Irving ES, Hayashi Y, Sutherland DS, Thorsen K, Autrup H, Beer C. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 2012, 130:145–157. PubMed
Kong L, Tuomela S, Hahne L, Ahlfors H, Yli‐Harja O, Fadeel B, Lahesmaa R, Autio R. NanoMiner—integrative human transcriptomics data resource for nanoparticle research. PLoS One 2013, 8:e68414. PubMed PMC
Feliu N, Kohonen P, Ji J, Zhang Y, Karlsson HL, Palmberg L, Nystrom A, Fadeel B. Next‐generation sequencing reveals low‐dose effects of cationic dendrimers in primary human bronchial epithelial cells. ACS Nano 2015, 9:146–163. PubMed
Afshari CA, Hamadeh HK, Bushel PR. The evolution of bioinformatics in toxicology: advancing toxicogenomics. Toxicol Sci 2011, 120(Suppl 1):S225–S237. PubMed PMC
Smalley JL, Gant TW, Zhang SD. Application of connectivity mapping in predictive toxicology based on gene‐expression similarity. Toxicology 2010, 268:143–146. PubMed
Gusenleitner D, Auerbach SS, Melia T, Gomez HF, Sherr DH, Monti S. Genomic models of short‐term exposure accurately predict long‐term chemical carcinogenicity and identify putative mechanisms of action. PLoS One 2014, 9:e102579. PubMed PMC
Lamb J. The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 2007, 7:54–60. PubMed
Choi JY, Ramachandran G, Kandlikar M. The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 2009, 43:3030–3034. PubMed
Szymanski P, Markowicz M, Mikiciuk‐Olasik E. Adaptation of high‐throughput screening in drug discovery‐toxicological screening tests. Int J Mol Sci 2012, 13:427–452. PubMed PMC
Rossnerova A, Spatova M, Schunck C, Sram RJ. Automated scoring of lymphocyte micronuclei by the MetaSystems Metafer image cytometry system and its application in studies of human mutagen sensitivity and biodosimetry of genotoxin exposure. Mutagenesis 2011, 26:169–175. PubMed
Buchser W, Collins M, Garyantes T, Guha R, Haney S, Lemmon V, Li Z, Trask OJ. Assay development guidelines for image‐based high content screening, high content analysis and high content imaging In: Sittampalam GS, Coussens NP, Nelson H, Arkin M, Auld D, Austin C, Bejcek B, Glicksman M, Inglese J, Iversen PW, et al., eds. Assay Guidance Manual. Bethesda, MD: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004. PubMed
Stone V, Nowack B, Baun A, van den Brink N, Kammer F, Dusinska M, Handy R, Hankin S, Hassellov M, Joner E, et al. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico‐chemical characterisation. Sci Total Environ 2010, 408:1745–1754. PubMed
Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 2012, 86:1123–1136. PubMed
Ruenraroengsak P, Novak P, Berhanu D, Thorley AJ, Valsami‐Jones E, Gorelik J, Korchev YE, Tetley TD. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine‐modified nanoparticles. Nanotoxicology 2012, 6:94–108. PubMed
Lunov O, Syrovets T, Loos C, Nienhaus GU, Mailander V, Landfester K, Rouis M, Simmet T. Amino‐functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 2011, 5:9648–9657. PubMed
Farrera C, Fadeel B. It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system. Eur J Pharm Biopharm 2015, 95:3–12. PubMed
Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 2005, 127:17604–17605. PubMed
Schrand AM, Huang H, Carlson C, Schlager JJ, Omacr Sawa E, Hussain SM, Dai L. Are diamond nanoparticles cytotoxic? J Phys Chem B 2007, 111:2–7. PubMed
Wang XZ, Yang Y, Li R, McGuinnes C, Adamson J, Megson IL, Donaldson K. Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles. Nanotoxicology 2014, 8:465–476. PubMed