Strategies to diagnose ovarian cancer: new evidence from phase 3 of the multicentre international IOTA study
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, metaanalýza, práce podpořená grantem
PubMed
24937676
PubMed Central
PMC4134495
DOI
10.1038/bjc.2014.333
PII: bjc2014333
Knihovny.cz E-zdroje
- MeSH
- endometrióza diagnostické zobrazování MeSH
- lidé MeSH
- multicentrické studie jako téma MeSH
- nádory vaječníků diagnostické zobrazování MeSH
- proporcionální rizikové modely MeSH
- prospektivní studie MeSH
- ROC křivka MeSH
- serózní cystadenom diagnostické zobrazování MeSH
- ultrasonografie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
BACKGROUND: To compare different ultrasound-based international ovarian tumour analysis (IOTA) strategies and risk of malignancy index (RMI) for ovarian cancer diagnosis using a meta-analysis approach of centre-specific data from IOTA3. METHODS: This prospective multicentre diagnostic accuracy study included 2403 patients with 1423 benign and 980 malignant adnexal masses from 2009 until 2012. All patients underwent standardised transvaginal ultrasonography. Test performance of RMI, subjective assessment (SA) of ultrasound findings, two IOTA risk models (LR1 and LR2), and strategies involving combinations of IOTA simple rules (SRs), simple descriptors (SDs) and LR2 with and without SA was estimated using a meta-analysis approach. Reference standard was histology after surgery. RESULTS: The areas under the receiver operator characteristic curves of LR1, LR2, SA and RMI were 0.930 (0.917-0.942), 0.918 (0.905-0.930), 0.914 (0.886-0.936) and 0.875 (0.853-0.894). Diagnostic one-step and two-step strategies using LR1, LR2, SR and SD achieved summary estimates for sensitivity 90-96%, specificity 74-79% and diagnostic odds ratio (DOR) 32.8-50.5. Adding SA when IOTA methods yielded equivocal results improved performance (DOR 57.6-75.7). Risk of Malignancy Index had sensitivity 67%, specificity 91% and DOR 17.5. CONCLUSIONS: This study shows all IOTA strategies had excellent diagnostic performance in comparison with RMI. The IOTA strategy chosen may be determined by clinical preference.
Department of Obstetrics and Gynaecology Ziekenhuis Oost Limburg Schiepse Bos 6 3600 Genk Belgium
KU Leuven Department of Development and Regeneration Herestraat 49 Box 7003 3000 Leuven Belgium
Zobrazit více v PubMed
Alcázar JL, Pascual MA, Olartecoechea B, Graupera B, Aubá M, Ajossa S, Hereter L, Julve R, Gastón B, Peddes C, Sedda F, Piras A, Saba L, Guerriero S. IOTA simple rules for discriminating between benign and malignant adnexal masses: prospective external validation. Ultrasound Obstet Gynecol. 2013;42 (4:467–471. PubMed
Ameye L, Timmerman D, Valentin L, Paladini D, Zhang J, Van Holsbeke C, Lissoni AA, Savelli L, Veldman J, Testa AC, Amant F, Van Huffel S, Bourne T. Clinically oriented three-step strategy for assessment of adnexal pathology. Ultrasound Obstet Gynecol. 2012;40 (5:582–591. PubMed
Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis PP, Glasziou PP, Irwig LM, Lijmer JG, Moher D, Rennie D, De Vet HC. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Ann Intern Med. 2003;138:40–44. PubMed
Bouwmeester W, Twisk JW, Kappen TH, van Klei WA, Moons KG, Vergouwe Y. Prediction models for clustered data: comparison of a random intercept and standard regression model. BMC Med Res Methodol. 2013;13:19. PubMed PMC
Cox DR. Two further applications of a model for binary regression. Biometrika. 1958;45:562–565.
Deeks JJ. Systematic reviews in health care: systematic reviews of evaluations of diagnostic and screening tests. BMJ. 2001;323 (7305:157–162. PubMed PMC
Education, Practical Standards Committee, European Federation of Societies for Ultrasound in Medicine and Biology Minimum training recommendations for the practice of medical ultrasound. Ultraschall in der Medizin. 2006;27 (1:79–105. PubMed
Fathallah K, Huchon C, Bats AS, Metzger U, Lefrere-Belda MA, Bensaid C, Lecuru F. External validation of simple ultrasound rules of Timmerman on 122 ovarian tumors. Gynecologie Obstetrique Fertilite. 2011;39 (9:477–481. PubMed
Hartman CA, Juliato CR, Sarian LO, Toledo MC, Jales RM, Morais SS, Pitta DD, Marussi EF, Derchain S. Ultrasound criteria and CA 125 as predictive variables of ovarian cancer in women with adnexal tumors. Ultrasound Obstet Gynecol. 2012;40 (3:360–366. PubMed
Heintz APM, Odicino F, Maisonneuve P, Beller U, Benedet JL, Creasman WT, Ngan HY, Pecorelli S. Carcinoma of the ovary: 25th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet. 2003;83 (suppl 1:S135–S137. PubMed
Jacobs I, Oram D, Fairbanks J, Turner J, Frost C, Grudzinskas JG. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol. 1990;97 (10:922–929. PubMed
Kaijser J, Sayasneh A, Van Hoorde K, Ghaem-Maghami S, Bourne T, Timmerman D, Van Calster B. Presurgical diagnosis of adnexal tumours using mathematical models and scoring systems: a systematic review and meta-analysis. Human Reprod Update. 2014;20 (3:449–462. PubMed
Kaijser J, Van Gorp T, Van Hoorde K, Van Holsbeke C, Sayasneh A, Vergote I, Bourne T, Timmerman D, Van Calster B. A comparison between an ultrasound based prediction model (LR2) and the Risk of Ovarian Malignancy Algorithm (ROMA) to assess the risk of malignancy in women with an adnexal mass. Gynecol Oncol. 2013;129 (2:377–383. PubMed
Macaskill P, Gatsonis C, Deeks JJ, Harbord R, Takwoingi Y.2010Chapter 10: analysing and presenting resultsIn: Deeks JJ, Bossuyt PM, Gatsonis C, (eds)Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 1.0. The Cochrane CollaborationAvailable from http://srdta.cochrane.org/ .
Miller RW, Ueland FR. Risk of malignancy in sonographically confirmed ovarian tumors. Clin Obstet Gynecol. 2012;55 (1:52–64. PubMed
Moore RG, McMeekin DS, Brown AK, DiSilvestro P, Miller MC, Allard WJ, Gajewski W, Kurman R, Bast RC, Jr, Skates SJ. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol Oncol. 2009;112:40–46. PubMed PMC
Nunes N, Ambler G, Hoo WL, Naftalin J, Foo X, Widschwendter M, Jurkovic D. A Prospective validation of the IOTA logistic regression models (LR1 and LR2) in comparison to subjective pattern recognition for the diagnosis of ovarian cancer. Int J Gynecol Cancer. 2013;23 (9:1583–1589. PubMed
Nunes N, Yazbek J, Ambler G, Hoo W, Naftalin J, Jurkovic D. A prospective evaluation of the IOTA logistic regression model (LR2) for the diagnosis of ovarian cancer. Ultrasound Obstet Gynecol. 2012;40 (3:355–359. PubMed
Riley RD, Dodd SR, Craig JV, Thompson JR, Williamson PR. Meta-analysis of diagnostic test studies using individual patient data and aggregate data. Stat Med. 2008;27 (29:6111–6136. PubMed
Sayasneh A, Kaijser J, Preisler J, Johnson S, Stalder C, Husicka R, Guha S, Naji O, Abdallah Y, Raslan F, Drought A, Smith AA, Fotopoulou C, Ghaem-Maghami S, Van Calster B, Timmerman D, Bourne T. A multicenter prospective external validation of the diagnostic performance of IOTA simple descriptors and rules to characterize ovarian masses. Gynecol Oncol. 2013;130 (1:140–146. PubMed
Sayasneh A, Wynants L, Preisler J, Kaijser J, Johnson S, Stalder C, Husicka R, Abdallah Y, Raslan F, Drought A, Smith AA, Ghaem-Maghami S, Epstein E, Van Calster B, Timmerman D, Bourne T. Multicenter external validation of IOTA prediction models and RMI by operators with varied training. Br J Cancer. 2013;108 (12:2448–2454. PubMed PMC
Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM, Carpenter JR. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. PubMed PMC
Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating (Statistics for Biology and Health) Springer: New York; 2009.
Timmerman D, Ameye L, Fischerova D, Epstein E, Melis GB, Guerriero S, Van Holsbeke C, Savelli L, Fruscio R, Lissoni AA, Testa AC, Veldman J, Vergote I, Van Huffel S, Bourne T, Valentin L. Simple ultrasound rules to distinguish between benign and malignant adnexal masses before surgery: prospective validation by IOTA group. BMJ. 2010;341:c6839. PubMed PMC
Timmerman D, Testa AC, Bourne T, Ameye L, Jurkovic D, Van Holsbeke C, Paladini D, Van Calster B, Vergote I, Van Huffel S, Valentin L. Simple ultrasound-based rules for the diagnosis of ovarian cancer. Ultrasound Obstet Gynecol. 2008;31 (6:681–690. PubMed
Timmerman D, Testa AC, Bourne T, Ferrazzi E, Ameye L, Konstantinovic ML, Van Calster B, Collins WP, Vergote I, Van Huffel S, Valentin L, International Ovarian Tumor Analysis Group Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group. J Clin Oncol. 2005;23:8794–8801. PubMed
Timmerman D, Valentin L, Bourne TH, Collins WP, Verrelst H, Vergote I, International Ovarian Tumor Analysis (IOTA) Group Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) Group. Ultrasound Obstet Gynecol. 2000;16:500–505. PubMed
Timmerman D, Van Calster B, Jurkovic D, Valentin L, Testa AC, Bernard JP, Van Holsbeke C, Van Huffel S, Vergote I, Bourne T. Inclusion of CA-125 does not improve mathematical models developed to distinguish between benign and malignant adnexal tumors. J Clin Oncol. 2007;25:4194–4200. PubMed
Timmerman D, Van Calster B, Testa AC, Guerriero S, Fischerova D, Lissoni AA, Van Holsbeke C, Fruscio R, Czekierdowski A, Jurkovic D, Savelli L, Vergote I, Bourne T, Van Huffel S, Valentin L. Ovarian cancer prediction in adnexal masses using ultrasound-based logistic regression models: a temporal and external validation study by the IOTA group. Ultrasound Obstet Gynecol. 2010;36 (2:226–234. PubMed
Valentin L, Hagen B, Tingulstad S, Eik-Nes S. Comparison of ‘pattern recognition' and logistic regression models for discrimination between benign and malignant pelvic masses: a prospective cross-validation. Ultrasound Obstet Gynecol. 2001;18:357–365. PubMed
Van Calster B, Timmerman D, Valentin L, McIndoe A, Ghaem-Maghami S, Testa AC, Vergote I, Bourne T. Triaging women with ovarian masses for surgery: observational diagnostic study to compare RCOG guidelines with an International Ovarian Tumour Analysis (IOTA) group protocol. BJOG. 2012;119 (6:662–671. PubMed
Van Calster B, Valentin L, Van Holsbeke C, Zhang J, Jurkovic D, Lissoni AA, Testa AC, Czekierdowski A, Fischerová D, Domali E, Van de Putte G, Vergote I, Van Huffel S, Bourne T, Timmerman D. A novel approach to predict the likelihood of specific ovarian tumor pathology based on serum CA-125: a multicenter observational study. Cancer Epidemiol Biomarkers Prev. 2011;20 (11:2420–2428. PubMed
Van Holsbeke C, Van Calster B, Bourne T, Ajossa S, Testa AC, Guerriero S, Fruscio R, Lissoni AA, Czekierdowski A, Savelli L, Van Huffel S, Valentin L, Timmerman D. External validation of diagnostic models to estimate the risk of malignancy in adnexal masses. Clin Cancer Res. 2012;18 (3:815–825. PubMed
Van Holsbeke C, Van Calster B, Testa AC, Domali E, Lu C, Van Huffel S, Valentin L, Timmerman D. Prospective internal validation of mathematical models to predict malignancy in adnexal masses: results from the international ovarian tumor analysis study. Clin Cancer Res. 2009;15:684–691. PubMed
van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med. 2002;21 (4:589–624. PubMed
Van Klaveren D, Steyerberg EW, Perel P, Vergouwe Y. Assessing discriminative ability of risk models in clustered data. BMC Med Res Methodol. 2014;14 (1:5. PubMed PMC
Verleye L, Vergote I, van der Zee AG. Patterns of care in surgery for ovarian cancer in Europe. Eur J Surg Oncol. 2010;36 (Suppl 1:S108–S114. PubMed
Woo YL, Kyrgiou M, Bryant A, Everett T, Dickinson HO. Centralisation of services for gynaecological cancers—a Cochrane systematic review. Gynecol Oncol. 2012;126 (2:286–290. PubMed