• This record comes from PubMed

Benign descriptors and ADNEX in two-step strategy to estimate risk of malignancy in ovarian tumors: retrospective validation in IOTA5 multicenter cohort

. 2023 Feb ; 61 (2) : 231-242. [epub] 20230112

Language English Country Great Britain, England Media print-electronic

Document type Multicenter Study, Journal Article, Research Support, Non-U.S. Gov't

Grant support
Allmänna Sjukhusets i Malmö Stiftelse för bekämpande av cancer
Avtal om läkarutbildning och forskning (ALF)-medel
C24/15/037 Internal Funds KU Leuven
Landstingsfinansierad Regional Forskning
LIN 2600 Linbury Trust Grant
National Institute for Health Research (NIHR) Biomedical Research Centre
G097322N /G049312N/G0B4716N/12F3114N Research Foundation-Flanders (FWO)
K2014-99X-22475-01-3, Dnr 2013-02282 Swedish Research Council

OBJECTIVE: Previous work has suggested that the ultrasound-based benign simple descriptors (BDs) can reliably exclude malignancy in a large proportion of women presenting with an adnexal mass. This study aimed to validate a modified version of the BDs and to validate a two-step strategy to estimate the risk of malignancy, in which the modified BDs are followed by the Assessment of Different NEoplasias in the adneXa (ADNEX) model if modified BDs do not apply. METHODS: This was a retrospective analysis using data from the 2-year interim analysis of the International Ovarian Tumor Analysis (IOTA) Phase-5 study, in which consecutive patients with at least one adnexal mass were recruited irrespective of subsequent management (conservative or surgery). The main outcome was classification of tumors as benign or malignant, based on histology or on clinical and ultrasound information during 1 year of follow-up. Multiple imputation was used when outcome based on follow-up was uncertain according to predefined criteria. RESULTS: A total of 8519 patients were recruited at 36 centers between 2012 and 2015. We excluded patients who were already in follow-up at recruitment and all patients from 19 centers that did not fulfil our criteria for good-quality surgical and follow-up data, leaving 4905 patients across 17 centers for statistical analysis. Overall, 3441 (70%) tumors were benign, 978 (20%) malignant and 486 (10%) uncertain. The modified BDs were applicable in 1798/4905 (37%) tumors, of which 1786 (99.3%) were benign. The two-step strategy based on ADNEX without CA125 had an area under the receiver-operating-characteristics curve (AUC) of 0.94 (95% CI, 0.92-0.96). The risk of malignancy was slightly underestimated, but calibration varied between centers. A sensitivity analysis in which we expanded the definition of uncertain outcome resulted in 1419 (29%) tumors with uncertain outcome and an AUC of the two-step strategy without CA125 of 0.93 (95% CI, 0.91-0.95). CONCLUSION: A large proportion of adnexal masses can be classified as benign by the modified BDs. For the remaining masses, the ADNEX model can be used to estimate the risk of malignancy. This two-step strategy is convenient for clinical use. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.

Descriptores benignos y ADNEX en una estrategia de dos pasos para estimar el riesgo de malignidad de tumores ováricos: validación retrospectiva en la cohorte multicéntrica IOTA5 Objetivo Estudios previos han sugerido que los descriptores simples benignos (DB) basados en ecografías pueden excluir de forma fiable la malignidad en una gran proporción de mujeres que presentan una masa anexial. El objetivo de este estudio fue validar una versión modificada de los DB y validar una estrategia de dos pasos para estimar el riesgo de malignidad, en la que a los DB modificados les sigue el modelo de Evaluación de las Distintas Neoplasias en el modelo ADNEX si no se aplican los DB modificados. Métodos El estudio fue un análisis retrospectivo con datos del análisis provisional al cabo de 2 años del estudio Fase 5 del Análisis Internacional de Tumores de Ovario (IOTA, por sus siglas en inglés), en el que se reclutaron pacientes consecutivas con al menos una masa anexial, independientemente del tratamiento posterior (farmacológico o quirúrgico). El resultado principal fue la clasificación de los tumores como benignos o malignos, en función de la histología o de la información clínica y ecográfica durante 1 año de seguimiento. Se utilizó una imputación múltiple cuando el resultado basado en el seguimiento fue incierto según criterios predefinidos. Resultados Se reclutaron 8519 pacientes en 36 centros entre 2012 y 2015. Se excluyeron a las pacientes que ya estaban en seguimiento en el momento del reclutamiento y a todas las pacientes de 19 centros que no cumplían los criterios del estudio de datos quirúrgicos y de seguimiento de buena calidad, con lo que quedaron 4905 pacientes de 17 centros para el análisis estadístico. En total, 3441 (70%) tumores eran benignos, 978 (20%) malignos y 486 (10%) inciertos. Los DB modificados fueron aplicables a 1798/4905 (37%) tumores, de los cuales 1786 (99,3%) eran benignos. La estrategia de dos pasos basada en ADNEX sin CA125 tuvo un área bajo la curva de características operativas del receptor (ABC) de 0,94 (IC 95%, 0,92–0,96). El riesgo de malignidad se subestimó ligeramente, pero la calibración varió entre centros. Un análisis de sensibilidad en el que se amplió la definición de resultado incierto dio como resultado 1419 (29%) tumores con resultado incierto y un ABC de la estrategia de dos pasos sin CA125 de 0,93 (IC 95%, 0,91–0,95). Conclusión Una gran proporción de masas anexiales puede clasificarse como benignas mediante los DB modificados. Para estimar el riesgo de malignidad para las masas restantes puede utilizarse el modelo ADNEX. Esta estrategia de dos pasos es útil para el uso clínico.

1st Department of Gynecological Oncology and Gynecology Medical University of Lublin Lublin Poland

1st Department of Obstetrics and Gynecology Alexandra Hospital National and Kapodistrian University of Athens Athens Greece

Clinic of Obstetrics and Gynecology University of Milano Bicocca San Gerardo Hospital Monza Italy

Department of Biomedical Data Sciences Leiden University Medical Centre Leiden The Netherlands

Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden

Department of Clinical Sciences Malmö Lund University Lund Sweden

Department of Development and Regeneration KU Leuven Leuven Belgium

Department of Epidemiology CAPHRI Care and Public Health Research Institute Maastricht University Maastricht The Netherlands

Department of Gynecologic Oncology National Cancer Institute of Milan Milan Italy

Department of Obstetrics and Gynecology Biomedical and Clinical Sciences Institute L Sacco University of Milan Milan Italy

Department of Obstetrics and Gynecology Clinica Universidad de Navarra School of Medicine Pamplona Spain

Department of Obstetrics and Gynecology Ikazia Hospital Rotterdam The Netherlands

Department of Obstetrics and Gynecology Skåne University Hospital Malmö Sweden

Department of Obstetrics and Gynecology Södersjukhuset Stockholm Sweden

Department of Obstetrics and Gynecology University Hospitals Leuven Leuven Belgium

Department of Obstetrics and Gynecology University of Cagliari Policlinico Universitario Duilio Casula Cagliari Italy

Department of Obstetrics and Gynecology University of Florence Florence Italy

Department of Obstetrics and Gynecology Whipps Cross Hospital London UK

Department of Obstetrics and Gynecology Ziekenhuis Oost Limburg Genk Belgium

Department of Perinatology and Oncological Gynecology Faculty of Medical Sciences Medical University of Silesia Katowice Poland

Department of Woman Child and Public Health Fondazione Policlinico Universitario A Gemelli IRCCS Rome Italy

Dipartimento Universitario Scienze della Vita e Sanità Pubblica Università Cattolica del Sacro Cuore Rome Italy

Gynecologic Oncology Centre Department of Obstetrics and Gynecology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Gynecology and Physiopathology of Human Reproduction Unit Sant'Orsola Malpighi Hospital of Bologna Bologna Italy

Institute for Maternal and Child Health IRCCS 'Burlo Garofolo' Trieste Italy

Laboratory of Tumor Immunology and Immunotherapy Department of Oncology Leuven Cancer Institute KU Leuven Leuven Belgium

Preventive Gynecology Unit Division of Gynecology European Institute of Oncology IRCCS Milan Italy

Queen Charlotte's and Chelsea Hospital Imperial College Healthcare NHS Trust London UK

Comment In

PubMed

See more in PubMed

Querleu D, Planchamp F, Chiva L, Fotopoulou C, Barton D, Cibula D, Aletti G, Carinelli S, Creutzberg C, Davidson B, Harter P, Lundvall L, Marth C, Morice P, Rafii A, Ray‐Coquard I, Rockall A, Sessa C, Van Der Zee A, Vergote I, Du Bois A. European society of gynaecologic oncology quality indicators for advanced ovarian cancer surgery. Int J Gynecol Cancer 2016; 26: 1354–1363. PubMed

Woo YL, Kyrgiou M, Bryant A, Everett T, Dickinson HO. Centralisation of services for gynaecological cancers ‐ A Cochrane systematic review. Gynecol Oncol 2012; 126: 286–290. PubMed

Engelen MJA, Kos HE, Willemse PHB, Aalders JG, De Vries EGE, Schaapveld M, Otter R, Van Der Zee AGJ. Surgery by consultant gynecologic oncologists improves survival in patients with ovarian carcinoma. Cancer 2006; 106: 589–598. PubMed

Bristow RE, Chang J, Ziogas A, Anton‐Culver H. Adherence to treatment guidelines for ovarian cancer as a measure of quality care. Obstet Gynecol 2013; 121: 1226–1234. PubMed

Jacobs I, Oram D, Fairbanks J, Turner J, Frost C, Grudzinskas J. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Maturitas 1991; 13: 177. PubMed

Testa A, Kaijser J, Wynants L, Fischerova D, Van Holsbeke C, Franchi D, Savelli L, Epstein E, Czekierdowski a., Guerriero S, Fruscio R, Leone FPG, Vergote I, Bourne T, Valentin L, Van Calster B, Timmerman D. Strategies to diagnose ovarian cancer: new evidence from phase 3 of the multicentre international IOTA study. Br J Cancer 2014; 111: 680–688. PubMed PMC

Van Calster B, Van Hoorde K, Valentin L, Testa AC, Fischerova D, Van Holsbeke C, Savelli L, Franchi D, Epstein E, Kaijser J, Van Belle V, Czekierdowski A, Guerriero S, Fruscio R, Lanzani C, Scala F, Bourne T, Timmerman D; International Ovarian Tumour Analysis Group . Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study. BMJ 2014; 349: g5920. PubMed PMC

Timmerman D, Testa AC, Bourne T, Ferrazzi E, Ameye L, Konstantinovic ML, Van Calster B, Collins WP, Vergote I, Van Huffel S, Valentin L. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: A multicenter study by the International Ovarian Tumor Analysis Group. J Clin Oncol 2005; 23: 8794–8801. PubMed

Timmerman D, Van Calster B, Testa A, Savelli L, Fischerova D, Froyman W, Wynants L, Van Holsbeke C, Epstein E, Franchi D, Kaijser J, Czekierdowski A, Guerriero S, Fruscio R, Leone FPG, Rossi A, Landolfo C, Vergote I, Bourne T, Valentin L. Predicting the risk of malignancy in adnexal masses based on the Simple Rules from the International Ovarian Tumor Analysis group. Am J Obstet Gynecol 2016; 214: 424–437. PubMed

Timmerman D, Testa A. C, Bourne T, Ameye L, Jurkovic D, Van Holsbeke C, Paladini D, Van Calster B, Vergote I, Van Huffel S, Valentin L. Simple ultrasound‐based rules for the diagnosis of ovarian cancer. Ultrasound Obstet Gynecol 2008; 31: 681–690. PubMed

Westwood M, Ramaekers B, Lang S, Grimm S, Deshpande S, de Kock S, Armstrong N, Joore M, Kleijnen J. Risk scores to guide referral decisions for people with suspected ovarian cancer in secondary care: A systematic review and cost‐effectiveness analysis. Health Technol Assess 2018; 22: 1–264. PubMed PMC

Meys EMJ, Kaijser J, Kruitwagen RFPM, Slangen BFM, Van Calster B, Aertgeerts B, Verbakel JY, Timmerman D, Van Gorp T. Subjective assessment versus ultrasound models to diagnose ovarian cancer: A systematic review and meta‐analysis. Eur J Cancer 2016; 58: 17–29. PubMed

Kaijser J, Sayasneh A, Van hoorde K, Ghaem‐maghami S, Bourne T, Timmerman D, Van Calster B. Presurgical diagnosis of adnexal tumours using mathematical models and scoring systems: A systematic review and meta‐analysis. Hum Reprod Update 2014; 20: 449–462. PubMed

Sayasneh A, Wynants L, Preisler J, Kaijser J, Johnson S, Stalder C, Husicka R, Abdallah Y, Raslan F, Drought A, Smith AA, Ghaem‐Maghami S, Epstein E, Van Calster B, Timmerman D, Bourne T. Multicentre external validation of IOTA prediction models and RMI by operators with varied training. Br J Cancer 2013; 108: 2448–2454. PubMed PMC

Ameye L, Timmerman D, Valentin L, Paladini D, Zhang J, Van Holsbeke C, Lissoni AA, Savelli L, Veldman J, Testa AC, Amant F, Van Huffel S, Bourne T. Clinically oriented three‐step strategy for assessment of adnexal pathology. Ultrasound Obstet Gynecol 2012; 40: 582–591. PubMed

Froyman W, Landolfo C, De Cock B, Wynants L, Sladkevicius P, Testa AC, Van Holsbeke C, Domali E, Fruscio R, Epstein E, dos Santos Bernardo MJ, Franchi D, Kudla MJ, Chiappa V, Alcazar JL, Leone FPG, Buonomo F, Hochberg L, Coccia ME, Guerriero S, Deo N, Jokubkiene L, Kaijser J, Coosemans A, Vergote I, Verbakel JY, Bourne T, Van Calster B, Valentin L, Timmerman D. Risk of complications in patients with conservatively managed ovarian tumours (IOTA5): a 2‐year interim analysis of a multicentre, prospective, cohort study. Lancet Oncol 2019; 20: 448–458. PubMed

Van Calster B, Valentin L, Froyman W, Landolfo C, Ceusters J, Testa AC, Wynants L, Sladkevicius P, Van Holsbeke C, Domali E, Fruscio R, Epstein E, Franchi D, Kudla MJ, Chiappa V, Alcazar JL, Leone FPG, Buonomo F, Coccia ME, Guerriero S, Deo N, Jokubkiene L, Savelli L, Fischerová D, Czekierdowski A, Kaijser J, Coosemans A, Scambia G, Vergote I, Bourne T, Timmerman D. Validation of models to diagnose ovarian cancer in patients managed surgically or conservatively: multicentre cohort study. BMJ 2020; 370: m2614. PubMed PMC

Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, Vickers AJ, Ransohoff DF, Collins GS. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): Explanation and elaboration. Ann Intern Med 2015; 162: W1–W73. PubMed

Timmerman D, Valentin L, Bourne TH, Collins WP, Verrelst H, Vergote I. Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) group. Ultrasound Obstet Gynecol 2000; 16: 500–505. PubMed

Education and Practical Standards Committee, European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) . Minimum training recommendations for the practice of medical ultrasound. Ultraschall Med 2006; 27: 79–105. PubMed

Valentin L. Use of morphology to characterize and manage common adnexal masses. Best Pract Res Clin Obstet Gynaecol 2004; 18: 71–89. PubMed

Prat J, FIGO Committee on Gynecologic Oncology . Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int J Gynecol Obstet 2014; 124: 1–5. PubMed

Van Calster B, McLernon DJ, Van Smeden M, Wynants L, Steyerberg EW, Bossuyt P, Collins GS, MacAskill P, Moons KGM, Vickers AJ. Calibration: The Achilles heel of predictive analytics. BMC Med 2019; 17: 1–7. PubMed PMC

Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 2016; 352: 3–7. PubMed PMC

Van Calster B, Vergouwe Y, Looman CWN, Van Belle V, Timmerman D, Steyerberg EW. Assessing the discriminative ability of risk models for more than two outcome categories. Eur J Epidemiol 2012; 27: 761–770. PubMed

Van Hoorde K, Vergouwe Y, Timmerman D, Van Huffel S, Steyerberg EW, Van Calster B. Assessing calibration of multinomial risk prediction models. Stat Med 2014; 33: 2585–2596. PubMed

Riley RD, Ensor J, Snell KIE, Debray TPA, Altman DG, Moons KGM, Collins GS. External validation of clinical prediction models using big datasets from e‐health records or IPD meta‐analysis: opportunities and challenges. BMJ 2016; 353: i3140. PubMed PMC

Snell KIE, Ensor J, Debray TPA, Moons KGM, Riley RD. Meta‐analysis of prediction model performance across multiple studies: Which scale helps ensure between‐study normality for the C‐statistic and calibration measures? Stat Methods Med Res 2018; 27: 3505–3522. PubMed PMC

De Groot JAH, Bossuyt PMM, Reitsma JB, Rutjes AWS, Dendukuri N, Janssen KJM, Moons KGM. Verification problems in diagnostic accuracy studies: Consequences and solutions. BMJ 2011; 343: 1–9. PubMed

Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, Reitsma JB, Kleijnen J, Mallett S. PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration. Ann Intern Med 2019; 170: W1–33. PubMed

Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating (2nd edn). Springer Cham, New York, 2019.

Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM, Carpenter JR. Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ 2009; 339: 157–160. PubMed PMC

Peces Rama A, Llanos Llanos MC, Sánchez Ferrer ML, Alcázar Zambrano JL, Martínez Mendoza A, Nieto Díaz A. Simple descriptors and simple rules of the International Ovarian Tumor Analysis (IOTA) Group: A prospective study of combined use for the description of adnexal masses. Eur J Obstet Gynecol Reprod Biol 2015; 195: 7–11. PubMed

Hidalgo JJ, Ros F, Aubá M, Errasti T, Olartecoechea B, Ruiz‐Zambrana, Alcázar JL. Prospective external validation of IOTA three‐step strategy for characterizing and classifying adnexal masses and retrospective assessment of alternative two‐step strategy using simple‐rules risk. Ultrasound Obstet Gynecol 2019; 53: 693–700. PubMed

Alcázar JL, Pascual MA, Graupera B, Aubá M, Errasti T, Olartecoechea B, Ruiz‐Zambrana A, Hereter L, Ajossa S, Guerriero S. External validation of IOTA simple descriptors and simple rules for classifying adnexal masses. Ultrasound Obstet Gynecol 2016; 48: 397–402. PubMed

Sayasneh A, Ferrara L, De Cock B, Saso S, Al‐Memar M, Johnson S, Kaijser J, Carvalho J, Husicka R, Smith A, Stalder C, Blanco MC, Ettore G, Van Calster B, Timmerman D, Bourne T. Evaluating the risk of ovarian cancer before surgery using the ADNEX model: A multicentre external validation study. Br J Cancer 2016; 115: 542–548. PubMed PMC

Andreotti RF, Timmerman D, Strachowski LM, Froyman W, Benacerraf BR, Bennett GL, Bourne T, Brown DL, Coleman BG, Frates MC, Goldstein SR, Hamper UM, Horrow MM, Hernanz‐Schulman M, Reinhold C, Rose SL, Whitcomb BP, Wolfman WL, Glanc P. O‐RADS US risk stratification and management system: A Consensus Guideline from the ACR Ovarian‐Adnexal Reporting and Data System Committee. Radiology 2020; 294: 168–185. PubMed

Timmerman D, Planchamp F, Bourne T, Landolfo C, Du Bois A, Chiva L, Cibula D, Concin N, Fischerova D, Froyman W, Gallardo Madueño G, Lemley B, Loft A, Mereu L, Morice P, Querleu D, Testa AC, Vergote I, Vandecaveye V, Scambia G, Fotopoulou C. ESGO/ISUOG/IOTA/ESGE Consensus Statement on preoperative diagnosis of ovarian tumors. Ultrasound Obstet Gynecol 2021; 58: 148–168. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...