Inhibition of nitric oxide synthase prevents muscarinic and purinergic functional changes and development of cyclophosphamide-induced cystitis in the rat
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24982868
PubMed Central
PMC4058690
DOI
10.1155/2014/359179
Knihovny.cz E-zdroje
- MeSH
- adenosin farmakologie MeSH
- adenosintrifosfát farmakologie MeSH
- cyklofosfamid MeSH
- cystitida farmakoterapie patologie patofyziologie MeSH
- imunohistochemie MeSH
- inhibitory enzymů farmakologie terapeutické užití MeSH
- mastocyty účinky léků patologie MeSH
- methacholinchlorid farmakologie MeSH
- močový měchýř účinky léků patologie patofyziologie MeSH
- potkani Sprague-Dawley MeSH
- purinergní receptory metabolismus MeSH
- receptory muskarinové metabolismus MeSH
- svalová kontrakce účinky léků MeSH
- synthasa oxidu dusnatého antagonisté a inhibitory metabolismus MeSH
- techniky in vitro MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosin MeSH
- adenosintrifosfát MeSH
- cyklofosfamid MeSH
- inhibitory enzymů MeSH
- methacholinchlorid MeSH
- purinergní receptory MeSH
- receptory muskarinové MeSH
- synthasa oxidu dusnatého MeSH
Nitric oxide (NO) has pivotal roles in cyclophosphamide- (CYP-) induced cystitis during which mucosal nitric oxide synthase (NOS) and muscarinic M5 receptor expressions are upregulated. In cystitis, urothelial muscarinic NO-linked effects hamper contractility. Therefore we wondered if a blockade of this axis also affects the induction of cystitis in the rat. Rats were pretreated with saline, the muscarinic receptor antagonist 4-DAMP (1 mg/kg ip), or the NOS inhibitor L-NAME (30 mg/kg ip) for five days. 60 h before the experiments the rats were treated with saline or CYP. Methacholine-, ATP-, and adenosine-evoked responses were smaller in preparations from CYP-treated rats than from saline-treated ones. Pretreatment with 4-DAMP did not change this relation, while pretreatment with L-NAME normalized the responses in the CYP-treated animals. The functional results were strengthened by the morphological observations; 4-DAMP pretreatment did not affect the parameters studied, namely, expression of muscarinic M5 receptors, P1A1 purinoceptors, mast cell distribution, or bladder wall enlargement. However, pretreatment with L-NAME attenuated the differences. Thus, the current study provides new insights into the complex mechanisms behind CYP-induced cystitis. The NO effects coupled to urothelial muscarinic receptors have a minor role in the development of cystitis. Inhibition of NOS may prevent the progression of cystitis.
Zobrazit více v PubMed
Stewart FA. Mechanism of bladder damage and repair after treatment with radiation and cytostatic drugs. The British Journal of Cancer. Supplement. 1986;53(7):280–291. PubMed PMC
Hu VY, Malley S, Dattilio A, Folsom JB, Zvara P, Vizzard MA. COX-2 and prostanoid expression in micturition pathways after cyclophosphamide-induced cystitis in the rat. American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 2003;284(2):R574–R585. PubMed
Smith CP, Vemulakonda VM, Kiss S, Boone TB, Somogyi GT. Enhanced ATP release from rat bladder urothelium during chronic bladder inflammation: effect of botulinum toxin A. Neurochemistry International. 2005;47(4):291–297. PubMed
Dang K, Lamb K, Cohen M, Bielefeldt K, Gebhart GF. Cyclophosphamide-induced bladder inflammation sensitizes and enhances P2X receptor function in rat bladder sensory neurons. Journal of Neurophysiology. 2008;99(1):49–59. PubMed PMC
Nazif O, Teichman JMH, Gebhart GF. Neural upregulation in interstitial cystitis. Urology. 2007;69(4):S24–S33. PubMed
Giglio D, Ryberg AT, To K, Delbro DS, Tobin G. Altered muscarinic receptor subtype expression and functional responses in cyclophosphamide induced cystitis in rats. Autonomic Neuroscience: Basic and Clinical. 2005;122(1-2):9–20. PubMed
Andersson M, Aronsson P, Giglio D, Wilhelmson A, Jeřábek P, Tobin G. Pharmacological modulation of the micturition pattern in normal and cyclophosphamide pre-treated conscious rats. Autonomic Neuroscience: Basic and Clinical. 2011;159(1-2):77–83. PubMed
Ito K, Iwami A, Katsura H, Ikeda M. Therapeutic effects of the putative P2X3/P2X2/3 antagonist A-317491 on cyclophosphamide-induced cystitis in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2008;377(4–6):483–490. PubMed
Wood R, Eichel L, Messing EM, Schwarz E. Automated noninvasive measurement of cyclophosphamide-induced changes in murine voiding frequency and volume. The Journal of Urology. 2001;165(2):653–659. PubMed
Burnstock G, Dumsday B, Smythe A. Atropine resistant excitation of the urinary bladder: the possibility of transmission via nerves releasing a purine nucleotide. British Journal of Pharmacology. 1972;44(3):451–461. PubMed PMC
Giglio D, Aronsson P, Eriksson L, Tobin G. In vitro characterization of parasympathetic and sympathetic responses in cyclophosphamide-induced cystitis in the rat. Basic and Clinical Pharmacology and Toxicology. 2007;100(2):96–108. PubMed
Aronsson P, Andersson M, Ericsson T, Giglio D. Assessment and characterization of purinergic contractions and relaxations in the rat urinary bladder. Basic and Clinical Pharmacology and Toxicology. 2010;107(1):603–613. PubMed
Nicholls J, Hourani SMO, Kitchen I. Characterization of P1-purinoceptors on rat duodenum and urinary bladder. British Journal of Pharmacology. 1992;105(3):639–642. PubMed PMC
Andersson MC, Tobin G, Giglio D. Cholinergic nitric oxide release from the urinary bladder mucosa in cyclophosphamide-induced cystitis of the anaesthetized rat. British Journal of Pharmacology. 2008;153(7):1438–1444. PubMed PMC
Giglio D, Tobin G. Muscarinic receptor subtypes in the lower urinary tract. Pharmacology. 2009;83(5):259–269.PHA2009083005259 PubMed
Vera PL, Wang X, Meyer-Siegler KL. Upregulation of macrophage migration inhibitory factor (MIF) and CD74, receptor for MIF, in rat bladder during persistent cyclophosphamide-induced inflammation. Experimental Biology and Medicine. 2008;233(5):620–626. PubMed
Matsuoka Y, Masuda H, Yokoyama M, Kihara K. Protective effects of heme oxygenase-1 against cyclophosphamide-induced haemorrhagic cystitis in rats. BJU International. 2007;100(6):1402–1408. PubMed
Pan F, Liu D, Han X-M, et al. Urodynamic investigation of cyclophosphamide-induced overactive bladder in conscious rats. Chinese Medical Journal. 2012;125(2):321–325. PubMed
Juszczak K, Gil K, Wyczolkowski M, Thor PJ. Functional, histological structure and mastocytes alterations in rat urinary bladders following acute and chronic cyclophosphamide treatment. Journal of Physiology and Pharmacology. 2010;61(4):477–482. PubMed
Cho KH, Hyun JH, Chang YS, Na YG, Shin JH, Song KH. Expression of nitric oxide synthase and aquaporin-3 in cyclophosphamide treated rat bladder. International Neurourology Journal. 2010;14(3):149–156. PubMed PMC
Lanteri-Minet M, Bon K, de Pommery J, Michiels JF, Menetrey D. Cyclophosphamide cystitis as a model of visceral pain in rats: model elaboration and spinal structures involved as revealed by the expression of c-Fos and Krox-24 proteins. Experimental Brain Research. 1995;105(2):220–232. PubMed
Smaldone MC, Vodovotz Y, Tyagi V, et al. Multiplex analysis of urinary cytokine levels in rat model of cyclophosphamide-induced cystitis. Urology. 2009;73(2):421–426. PubMed PMC
Persu C, Cauni V, Gutue S, Blaj I, Jinga V, Geavlete P. From interstitial cystitis to chronic pelvic pain. Journal of Medicine and Life. 2010;3(2):167–174. PubMed PMC
Logadottir YR, Ehrén I, Fall M, Wiklund NP, Peeker R. Intravesical nitric oxide production discriminates between classic and nonulcer interstitial cystitis. Journal of Urology. 2004;171(3):1148–1150. PubMed
Sun Y, Chai TC. Augmented extracellular ATP signaling in bladder urothelial cells from patients with interstitial cystitis. American Journal of Physiology—Cell Physiology. 2006;290(1):C27–C34. PubMed
Lin Y-H, Liu G, Kavran M, et al. Lower urinary tract phenotype of experimental autoimmune cystitis in mouse: a potential animal model for interstitial cystitis. BJU International. 2008;102(11):1724–1730. PubMed
Wyndaele J-J, van Dyck J, Toussaint N. Cystoscopy and bladder biopsies in patients with bladder pain syndrome carried out following ESSIC guidelines. Scandinavian Journal of Urology and Nephrology. 2009;43(6):471–475. PubMed
Peeker R, Enerbäck L, Fall M, Aldenborg F. Recruitment, distribution and phenotypes of mast cells in interstitial cystitis. The Journal of Urology. 2000;163(3):1009–1015. PubMed
Larsen S, Thompson SA, Hald T. Mast cells in interstitial cystitis. British Journal of Urology. 1982;54(3):283–286. PubMed
Meyer-Siegler KL, Iczkowski KA, Vera PL. Macrophage migration inhibitory factor is increased in the urine of patients with urinary tract infection: macrophage migration inhibitory factor-protein complexes in human urine. The Journal of Urology. 2006;175(4):1523–1528. PubMed
Aronsson P, Johnsson M, Vesela R, Winder M, Tobin G. Adenosine receptor antagonism suppresses functional and histological inflammatory changes in the rat urinary bladder. Autonomic Neuroscience: Basic and Clinical. 2012;171(1-2):49–57. PubMed
Vesela R, Aronsson P, Tobin G. Functional and morphological examinations of P1A1 purinoceptors in the normal and inflamed urinary bladder of the rat. Autonomic Neuroscience: Basic and Clinical. 2011;159(1-2):26–31. PubMed
Tobin G, Sjogren C. In vivo and in vitro effects of muscarinic receptor antagonists on contractions and release of [3H]acetylcholine in the rabbit urinary bladder. European Journal of Pharmacology. 1995;281(1):1–8. PubMed
Koskela LR, Thiel T, Ehrén I, De Verdier PJ, Wiklund NP. Localization and expression of inducible nitric oxide synthase in biopsies from patients with interstitial cystitis. The Journal of Urology. 2008;180(2):737–741. PubMed
Sun Y, Keay S, de Deyne PG, Chai TC. Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. The Journal of Urology. 2001;166(5):1951–1956. PubMed
Souza-Fiho MV, Lima MV, Pompeu MM, Ballejo G, Cunha FQ, Rde AR. Involvement of nitric oxide in the pathogenesis of cyclophosphamide-induced hemorrhagic cystitis. The American Journal of Pathology. 1997;150:247–256. PubMed PMC
Oter S, Korkmaz A, Oztas E, Yildirim I, Topal T, Bilgic H. Inducible nitric oxide synthase inhibition in cyclophosphamide induced hemorrhagic cystitis in rats. Urological Research. 2004;32(3):185–189. PubMed
Andersson K-E, Persson K. Nitric oxide synthase and the lower urinary tract: possible implications for physiology and pathophysiology. Scandinavian Journal of Urology and Nephrology, Supplement. 1995;(175):43–53. PubMed
Säve S, Mjösberg J, Poljakovic M, Mohlin C, Persson K. Adenosine receptor expression in Escherichia coli-infected and cytokine-stimulated human urinary tract epithelial cells. BJU International. 2009;104(11):1758–1765. PubMed
Andersson M, Aronsson P, Doufish D, Lampert A, Tobin G. Muscarinic receptor subtypes involved in urothelium-derived relaxatory effects in the inflamed rat urinary bladder. Autonomic Neuroscience: Basic and Clinical. 2012;170(1-2):5–11. PubMed
Chuang S-M, Liu K-M, Li Y-L, et al. Dual involvements of cyclooxygenase and nitric oxide synthase expressions in ketamine-induced ulcerative cystitis in rat bladder. Neurourology and Urodynamics. 2013;32(8):1137–1143. PubMed
Xu X, Cubeddu LX, Malave A. Expression of inducible nitric oxide synthase in primary culture of rat bladder smooth muscle cells by plasma from cyclophosphamide-treated rats. European Journal of Pharmacology. 2001;416(1-2):1–9. PubMed
Rössberger J, Fall M, Gustafsson CK, Peeker R. Does mast cell density predict the outcome after transurethral resection of Hunner’s lesions in patients with type 3C bladder pain syndrome/interstitial cystitis? Scandinavian Journal of Urology and Nephrology. 2010;44(6):433–437. PubMed