A novel multi-phosphonate surface treatment of titanium dental implants: a study in sheep
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
25215424
PubMed Central
PMC4192609
DOI
10.3390/jfb5030135
PII: jfb5030135
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The aim of the present study was to evaluate a new multi-phosphonate surface treatment (SurfLink®) in an unloaded sheep model. Treated implants were compared to control implants in terms of bone to implant contact (BIC), bone formation, and biomechanical stability. The study used two types of implants (rough or machined surface finish) each with either the multi-phosphonate Wet or Dry treatment or no treatment (control) for a total of six groups. Animals were sacrificed after 2, 8, and 52 weeks. No adverse events were observed at any time point. At two weeks, removal torque showed significantly higher values for the multi-phosphonate treated rough surface (+32% and +29%, Dry and Wet, respectively) compared to rough control. At 52 weeks, a significantly higher removal torque was observed for the multi-phosphonate treated machined surfaces (+37% and 23%, Dry and Wet, respectively). The multi-phosphonate treated groups showed a positive tendency for higher BIC with time and increased new-old bone ratio at eight weeks. SEM images revealed greater amounts of organic materials on the multi-phosphonate treated compared to control implants, with the bone fracture (from the torque test) appearing within the bone rather than at the bone to implant interface as it occurred for control implants.
Institute for Biomechanics ETH Zürich Vladimir Prelog Weg 1 5 10 Zürich 8093 Switzerland
Nano Bridging Molecules SA Rte Cité Ouest 2 Gland 1196 Switzerland
Zobrazit více v PubMed
Sennerby L., Wennerberg A. State of the art of oral implants. Periodontol 2000. 2008;47:15–26. doi: 10.1111/j.1600-0757.2007.00247.x. PubMed DOI
Ekelund J.-A., Lindquist L.W., Carlsson G.E., Jemt T. Implant treatment in the edentulous mandible: A prospective study on Brånemark system implants over more than 20 years. Int. J. Prosthodont. 2003;16:602–608. PubMed
Adell R., Lekholm U., Rockler B., Brånemark P.I. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int. J. Oral Surg. 1981;10:387–416. doi: 10.1016/S0300-9785(81)80077-4. PubMed DOI
Albrektsson T., Dahl E., Enbom L., Engevall S., Engquist B., Eriksson A.R., Feldmann G., Freiberg N., Glantz P.O., Kjellman O. Osseointegrated oral implants. A Swedish multicenter study of 8139 consecutively inserted Nobelpharma implants. J. Periodontol. 1988;59:287–296. PubMed
Brunette D., Tengvall P., Textor M., Thomsen P. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications. Springer-Berlin; Berlin, Germany: 2013.
Akagawa Y., Abe Y. Titanium: The ultimate solution or an evolutionary step? Int. J. Prosthodont. 2003;16:28–29; 47–51. PubMed
Esposito M., Murray-Curtis L., Grusovin M.G., Coulthard P., Worthington H.V. Interventions for replacing missing teeth: Different types of dental implants. Cochrane Database Syst. Rev. 2007 doi: 10.1002/14651858.CD003815.pub3. PubMed DOI
Junker R., Dimakis A., Thoneick M., Jansen J.A. Effects of implant surface coatings and composition on bone integration: A systematic review. Clin. Oral Implants Res. 2009;20:185–206. doi: 10.1111/j.1600-0501.2009.01777.x. PubMed DOI
Mendonça G., Mendonça D.B.S., Aragão F.J.L., Cooper L.F. Advancing dental implant surface technology—From micron- to nanotopography. Biomaterials. 2008;29:3822–3835. PubMed
Le Guéhennec L., Soueidan A., Layrolle P., Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2007;23:844–854. PubMed
Creugers N.H., Kreulen C.M., Snoek P.A., de Kanter R.J. A systematic review of single-tooth restorations supported by implants. J. Dent. 2000;28:209–217. doi: 10.1016/S0736-5748(99)00078-7. PubMed DOI
Bartlett D. Implants for life? A critical review of implant-supported restorations. J. Dent. 2007;35:768–772. doi: 10.1016/j.jdent.2007.07.003. PubMed DOI
Friberg B. The posterior maxilla: Clinical considerations and current concepts using Brånemark System implants. Periodontol. 2000. 2008;47:67–78. doi: 10.1111/j.1600-0757.2007.00238.x. PubMed DOI
Puleo D.A., Thomas M.V. Implant surfaces. Dent. Clin. North Am. 2006;50:323–338. doi: 10.1016/j.cden.2006.03.001. PubMed DOI
Suvan J., Petrie A., Moles D.R., Nibali L., Patel K., Darbar U., Donos N., Tonetti M., D’Aiuto F. Body mass index as a predictive factor of periodontal therapy outcomes. J. Dent. Res. 2014;93:49–54. doi: 10.1177/0022034513511084. PubMed DOI PMC
Scully C., Hobkirk J., Dios P.D. Dental endosseous implants in the medically compromised patient. J. Oral Rehabil. 2007;34:590–599. doi: 10.1111/j.1365-2842.2007.01755.x. PubMed DOI
Lekholm U. Immediate/early loading of oral implants in compromised patients. Periodontol 2000. 2003;33:194–203. doi: 10.1046/j.0906-6713.2003.03316.x. PubMed DOI
Cano J., Campo J., Vaquero J.J., Martínez González J.M., Bascones A. High resolution image in bone biology II. Review of the literature. Med. Oral Patol. Oral Cir. Bucal. 2008;13:E31–E35. PubMed
Al-Sabbagh M. Implants in the esthetic zone. Dent. Clin. North Am. 2006;50:391–407. PubMed
Wennerberg A., Albrektsson T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral Implants Res. 2009;20:172–184. doi: 10.1111/j.1600-0501.2009.01775.x. PubMed DOI
Shalabi M.M., Gortemaker A., Van’t Hof M.A., Jansen J.A., Creugers N.H.J. Implant surface roughness and bone healing: A systematic review. J. Dent. Res. 2006;85:496–500. doi: 10.1177/154405910608500603. PubMed DOI
Cooper L.F. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J. Prosthet. Dent. 2000;84:522–534. doi: 10.1067/mpr.2000.111966. PubMed DOI
Albrektsson T., Wennerberg A. The impact of oral implants-past and future, 1966–2042. J. Can. Dent. Assoc. 2005;71:327:1–327:5. PubMed
Jäger M., Zilkens C., Zanger K., Krauspe R. Significance of nano- and microtopography for cell-surface interactions in orthopaedic implants. J. Biomed. Biotechnol. 2007:69036:1–69036:19. PubMed PMC
Maekawa K., Yoshida Y., Mine A., Fujisawa T., Van Meerbeek B., Suzuki K., Kuboki T. Chemical interaction of polyphosphoric acid with titanium and its effect on human bone marrow derived mesenchymal stem cell behavior. J. Biomed. Mater. Res. A. 2007;82:195–200. doi: 10.1002/jbm.a.31139. PubMed DOI
Maekawa K., Shimono K., Oshima M., Yoshida Y., Van Meerbeek B., Suzuki K., Kuboki T. Polyphosphoric acid treatment promotes bone regeneration around titanium implants. J. Oral Rehabil. 2009;36:362–367. doi: 10.1111/j.1365-2842.2008.01928.x. PubMed DOI
Kawazoe Y., Shiba T., Nakamura R., Mizuno A., Tsutsumi K., Uematsu T., Yamaoka M., Shindoh M., Kohgo T. Induction of calcification in MC3T3-E1 cells by inorganic polyphosphate. J. Dent. Res. 2004;83:613–618. doi: 10.1177/154405910408300806. PubMed DOI
Harada K., Itoh H., Kawazoe Y., Miyazaki S., Doi K., Kubo T., Akagawa Y., Shiba T. Polyphosphate-mediated inhibition of tartrate-resistant acid phosphatase and suppression of bone resorption of osteoclasts. PLoS One. 2013;8 doi: 10.1371/journal.pone.0078612. PubMed DOI PMC
Russell R.G.G., Watts N.B., Ebetino F.H., Rogers M.J. Mechanisms of action of bisphosphonates: Similarities and differences and their potential influence on clinical efficacy. Osteoporos. Int. 2008;19:733–759. doi: 10.1007/s00198-007-0540-8. PubMed DOI
Gittens R.A., Scheideler L., Rupp F., Hyzy S.L., Geis-Gerstorfer J., Schwartz Z., Boyan B.D. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater. 2014;10:2907–2918. doi: 10.1016/j.actbio.2014.03.032. PubMed DOI PMC
Shannon F.J., Cottrell J.M., Deng X.-H., Crowder K.N., Doty S.B., Avaltroni M.J., Warren R.F., Wright T.M., Schwartz J. A novel surface treatment for porous metallic implants that improves the rate of bony ongrowth. J. Biomed. Mater. Res. A. 2008;86:857–864. doi: 10.1002/jbm.a.31651. PubMed DOI
Auernheimer J., Zukowski D., Dahmen C., Kantlehner M., Enderle A., Goodman S.L., Kessler H. Titanium implant materials with improved biocompatibility through coating with phosphonate-anchored cyclic RGD peptides. Chembiochem. Eur. J. Chem. Biol. 2005;6:2034–2040. doi: 10.1002/cbic.200500031. PubMed DOI
Heijink A., Schwartz J., Zobitz M.E., Nicole Crowder K., Lutz G.E., Sibonga J.D. Self-assembled monolayer films of phosphonates for bonding RGD to titanium. Clin. Orthop. 2008;466:977–984. doi: 10.1007/s11999-008-0117-7. PubMed DOI PMC
Viornery C., Chevolot Y., Léonard D., Aronsson B.-O., Péchy P., Mathieu H.J., Descouts P., Grätzel M. Surface modification of titanium with phosphonic acid to improve bone bonding: Characterization by XPS and ToF-SIMS. Langmuir. 2002;18:2582–2589. doi: 10.1021/la010908i. DOI
Esposito M., Grusovin M.G., Achille H., Coulthard P., Worthington H.V. Interventions for replacing missing teeth: Different times for loading dental implants. Cochrane Database Syst. Rev. 2009 doi: 10.1002/14651858.CD003878.pub4. PubMed DOI
Viornery C., Guenther H.L., Aronsson B.-O., Péchy P., Descouts P., Grätzel M. Osteoblast culture on polished titanium disks modified with phosphonic acids. J. Biomed. Mater. Res. 2002;62:149–155. doi: 10.1002/jbm.10205. PubMed DOI
Terheyden H., Lang N.P., Bierbaum S., Stadlinger B. Osseointegration–communication of cells. Clin. Oral Implants Res. 2012;23:1127–1135. doi: 10.1111/j.1600-0501.2011.02327.x. PubMed DOI
Dayer R., Rizzoli R., Péchy P., Vig T., Aronsson B.-O., Descouts P., Ammann P. Chemical modification of smooth titanium implant surface by coating with propylene-tetra-phosphonic acid increases their osseointegration. Bone. 2005;36 doi: 10.1016/j.bone.2005.04.001. DOI
Esposito M., Dojcinovic I., Germon L., Lévy N., Curno R., Buchini S., Péchy P., Aronsson B.-O. Safety and efficacy of a biomimetic monolayer of permanently bound multi-phosphonic acid molecules on dental implants: 1 year post-loading results from a pilot quadruple-blinded randomised controlled trial. Eur. J. Oral Implantol. 2013;6:227–236. PubMed
Langhoff J.D., Voelter K., Scharnweber D., Schnabelrauch M., Schlottig F., Hefti T., Kalchofner K., Nuss K., von Rechenberg B. Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: A study in sheep. Int. J. Oral Maxillofac. Surg. 2008;37:1125–1132. doi: 10.1016/j.ijom.2008.09.008. PubMed DOI
Martini L., Fini M., Giavaresi G., Giardino R. Sheep model in orthopedic research: A literature review. Comp. Med. 2001;51:292–299. PubMed
Apelt D., Theiss F., El-Warrak A.O., Zlinszky K., Bettschart-Wolfisberger R., Bohner M., Matter S., Auer J.A., von Rechenberg B. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials. 2004;25:1439–1451. doi: 10.1016/j.biomaterials.2003.08.073. PubMed DOI
Kuttenberger J.J., Waibel A., Stübinger S., Werner M., Klasing M., Ivanenko M., Hering P., von Rechenberg B., Sader R., Zeilhofer H.-F. Bone healing of the sheep tibia shaft after carbon dioxide laser osteotomy: Histological results. Lasers Med. Sci. 2010;25:239–249. doi: 10.1007/s10103-009-0714-z. PubMed DOI
Newman E., Turner A.S., Wark J.D. The potential of sheep for the study of osteopenia: Current status and comparison with other animal models. Bone. 1995;16:S277–S284. doi: 10.1016/S8756-3282(95)80121-9. PubMed DOI
Kimmel D.B., Jee W.S. A quantitative histologic study of bone turnover in young adult beagles. Anat. Rec. 1982;203:31–45. doi: 10.1002/ar.1092030104. PubMed DOI
Al-Nawas B., Groetz K.A., Goetz H., Duschner H., Wagner W. Comparative histomorphometry and resonance frequency analysis of implants with moderately rough surfaces in a loaded animal model. Clin. Oral Implants Res. 2008;19:1–8. PubMed
Morand M., Irinakis T. The challenge of implant therapy in the posterior maxilla: Providing a rationale for the use of short implants. J. Oral Implantol. 2007;33:257–266. doi: 10.1563/1548-1336(2007)33[257:TCOITI]2.0.CO;2. PubMed DOI
Abrahamsson I., Linder E., Larsson L., Berglundh T. Deposition of nanometer scaled calcium-phosphate crystals to implants with a dual acid-etched surface does not improve early tissue integration. Clin. Oral Implants Res. 2013;24:57–62. doi: 10.1111/j.1600-0501.2012.02424.x. PubMed DOI
Wheeler S.L. Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int. J. Oral Maxillofac. Implants. 1996;11:340–350. PubMed
Van Oirschot B.A.J.A., Bronkhorst E.M., van den Beucken J.J.J.P., Meijer G.J., Jansen J.A., Junker R. Long-term survival of calcium phosphate-coated dental implants: A meta-analytical approach to the clinical literature. Clin. Oral Implants Res. 2013;24:355–362. PubMed
Albrektsson T.O., Johansson C.B., Sennerby L. Biological aspects of implant dentistry: Osseointegration. Periodontol 2000. 1994;4:58–73. doi: 10.1111/j.1600-0757.1994.tb00006.x. PubMed DOI
Gholami H., Mericske-Stern R., Kessler-Liechti G., Katsoulis J. Radiographic bone level changes of implant-supported restorations in edentulous and partially dentate patients: 5-year results. Int. J. Oral Maxillofac. Implants. 2014;29:898–904. doi: 10.11607/jomi.3042. PubMed DOI
Esposito M., Hirsch J.M., Lekholm U., Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur. J. Oral Sci. 1998;106:527–551. PubMed
Kong Y.-M., Kim D.-H., Kim H.-E., Heo S.-J., Koak J.-Y. Hydroxyapatite-based composite for dental implants: An in vivo removal torque experiment. J. Biomed. Mater. Res. 2002;63:714–721. doi: 10.1002/jbm.10392. PubMed DOI
Sabbatini L., Zambonin P.G. XPS and SIMS surface chemical analysis of some important classes of polymeric biomaterials. J. Electron Spectrosc. Relat. Phenom. 1996;81:285–301. doi: 10.1016/0368-2048(95)02528-6. DOI
Buser D., Nydegger T., Oxland T., Cochran D.L., Schenk R.K., Hirt H.P., Snétivy D., Nolte L.P. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: A biomechanical study in the maxilla of miniature pigs. J. Biomed. Mater. Res. 1999;45:75–83. doi: 10.1002/(SICI)1097-4636(199905)45:2<75::AID-JBM1>3.0.CO;2-P. PubMed DOI
Ferguson S.J., Langhoff J.D., Voelter K., von Rechenberg B., Scharnweber D., Bierbaum S., Schnabelrauch M., Kautz A.R., Frauchiger V.M., Mueller T.L., et al. Biomechanical comparison of different surface modifications for dental implants. Int. J. Oral Maxillofac. Implants. 2008;23:1037–1046. PubMed