Effect of standardized cranberry extract on the activity and expression of selected biotransformation enzymes in rat liver and intestine
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25237750
PubMed Central
PMC6271979
DOI
10.3390/molecules190914948
PII: molecules190914948
Knihovny.cz E-zdroje
- MeSH
- biotransformace MeSH
- játra účinky léků enzymologie MeSH
- krysa rodu Rattus MeSH
- potkani Wistar MeSH
- rostlinné extrakty farmakologie MeSH
- střeva účinky léků enzymologie MeSH
- Vaccinium macrocarpon chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné extrakty MeSH
The use of dietary supplements containing cranberry extract is a common way to prevent urinary tract infections. As consumption of these supplements containing a mixture of concentrated anthocyanins and proanthocyanidins has increased, interest in their possible interactions with drug-metabolizing enzymes has grown. In this in vivo study, rats were treated with a standardized cranberry extract (CystiCran®) obtained from Vaccinium macrocarpon in two dosage schemes (14 days, 0.5 mg of proanthocyanidins/kg/day; 1 day, 1.5 mg of proanthocyanidins/kg/day). The aim of this study was to evaluate the effect of anthocyanins and proanthocyanidins contained in this extract on the activity and expression of intestinal and hepatic biotransformation enzymes: cytochrome P450 (CYP1A1, CYP1A2, CYP2B and CYP3A), carbonyl reductase 1 (CBR1), glutathione-S-transferase (GST) and UDP-glucuronosyl transferase (UGT). Administration of cranberry extract led to moderate increases in the activities of hepatic CYP3A (by 34%), CYP1A1 (by 38%), UGT (by 40%), CBR1 (by 17%) and GST (by 13%), while activities of these enzymes in the small intestine were unchanged. No changes in the relative amounts of these proteins were found. Taken together, the interactions of cranberry extract with simultaneously administered drugs seem not to be serious.
Zobrazit více v PubMed
Klein M.A. Cranberry (Vaccinium macrocarpon) aiton. In: Coates P.M., Blackman M.R., Cragg G.M., Levine M., Moss J., White J.D., editors. Encyclopedia of Dietary Supplements. 1st ed. Marcel Dekker; New York, NY, USA: 2005. pp. 143–149.
Kresty L.A., Howell A.B., Baird M. Cranberry proanthocyanidins mediate growth arrest of lung cancer cells through modulation of gene expression and rapid induction of apoptosis. Molecules. 2011;16:2375–2390. doi: 10.3390/molecules16032375. PubMed DOI PMC
Barbosa-Cesnik C., Brown M.B., Buxton M., Zhang L., DeBusscher J., Foxman B. Cranberry juice fails to prevent recurrent urinary tract infection: Results from a randomized placebo-controlled trial. Clin. Infect. Dis. 2011;52:23–30. doi: 10.1093/cid/ciq073. PubMed DOI PMC
Freire Gde C. Cranberries for preventing urinary tract infections. Sao Paulo Med. J. 2013;131:363. doi: 10.1590/1516-3180.20131315T1. PubMed DOI PMC
Dao C.A., Patel K.D., Neto C.C. Phytochemicals from the fruit and foliage of cranberry (Vaccinium macrocarpon)-potential benefits for human health. ACS Symp. Ser. 2012;1093:79–94.
Wang Y., Catana F., Yang Y., Roderick R., van Breemen R.B. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J. Agric. Food Chem. 2002;50:431–435. doi: 10.1021/jf010812u. PubMed DOI
Borges G., Degeneve A., Mullen W., Crozier A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J. Agric. Food Chem. 2010;58:3901–3909. doi: 10.1021/jf902263n. PubMed DOI
Deziel B.A., Patel K., Neto C., Gottschall-Pass K., Hurta R.A.R. Proanthocyanidins from the american cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways. J. Cell. Biochem. 2010;111:742–754. doi: 10.1002/jcb.22761. PubMed DOI
Foo L.Y., Lu Y.R., Howell A.B., Vorsa N. A-type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli. J. Nat. Prod. 2000;63:1225–1228. doi: 10.1021/np000128u. PubMed DOI
Uesawa Y., Mohri K. Effects of cranberry juice on nifedipine pharmacokinetics in rats. J. Pharm. Pharmacol. 2006;58:1067–1072. doi: 10.1211/jpp.58.8.0007. PubMed DOI
Ngo N., Yan Z.X., Graf T.N., Carrizosa D.R., Kashuba A.D.M., Dees E.C., Oberlies N.H., Paine M.F. Identification of a cranberry juice product that inhibits enteric CYP3A-mediated first-pass metabolism in humans. Drug Metab. Dispos. 2009;37:514–522. doi: 10.1124/dmd.108.024968. PubMed DOI PMC
Grenier J., Fradette C., Morelli G., Merritt G.J., Vranderick M., Ducharme M.P. Pomelo juice, but not cranberry juice, affects the pharmacokinetics of cyclosporine in humans. Clin. Pharmacol. Ther. 2006;79:255–262. doi: 10.1016/j.clpt.2005.11.010. PubMed DOI
Palikova I., Vostalova J., Zdarilova A., Svobodova A., Kosina P., Vecera R., Stejskal D., Proskova J., Hrbac J., Bednar P., et al. Long-term effects of three commercial cranberry products on the antioxidative status in rats: A pilot study. J. Agric. Food Chem. 2010;58:1672–1678. doi: 10.1021/jf903710y. PubMed DOI
Mohamed M.E.F., Frye R.F. Inhibitory effects of commonly used herbal extracts on UDP-glucuronosyltransferase 1A4, 1A6, and 1A9 enzyme activities. Drug Metab. Dispos. 2011;39:1522–1528. doi: 10.1124/dmd.111.039602. PubMed DOI PMC
Szotáková B., Bártíková H., Hlaváčová J., Boušová I., Skálová L. Inhibitory effect of anthocyanidins on hepatic glutathione S-transferase, UDP-glucuronosyltransferase and carbonyl reductase activities in rat and human. Xenobiotica. 2013;43:679–685. doi: 10.3109/00498254.2012.756557. PubMed DOI
Howell A.B., Reed J.D., Krueger C.G., Winterbottom R., Cunningham D.G., Leahy M. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry. 2005;66:2281–2291. doi: 10.1016/j.phytochem.2005.05.022. PubMed DOI
Manach C., Williamson G., Morand C., Scalbert A., Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005;81:230s–242s. PubMed
Ou K., Gu L. Absorption and metabolism of proanthocyanidins. J. Funct. Foods. 2014;7:43–53. doi: 10.1016/j.jff.2013.08.004. DOI
Spencer J.P.E., el Mohsen M.M.A., Rice-Evans C. Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity. Arch. Biochem. Biophys. 2004;423:148–161. doi: 10.1016/j.abb.2003.11.010. PubMed DOI
Kramer S.D., Testa B. The biochemistry of drug metabolism--an introduction: Part 6. Inter-individual factors affecting drug metabolism. Chem. Biodivers. 2008;5:2465–2578. PubMed
Guengerich F.P. Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol. 2008;21:70–83. doi: 10.1021/tx700079z. PubMed DOI
Chow H.H., Garland L.L., Hsu C.H., Vining D.R., Chew W.M., Miller J.A., Perloff M., Crowell J.A., Alberts D.S. Resveratrol modulates drug-and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev. Res. 2010;3:1168–1175. doi: 10.1158/1940-6207.CAPR-09-0155. PubMed DOI PMC
Duan K.M., Wang S.Y., Ouyang W., Mao Y.M., Yang L.J. Effect of quercetin on CYP3A activity in Chinese healthy participants. J. Clin. Pharmacol. 2012;52:940–946. doi: 10.1177/0091270011406278. PubMed DOI
Testa B., Kramer S.D. The biochemistry of drug metabolism-An introduction-Part 2. Redox reactions and their enzymes. Chem. Biodivers. 2007;4:257–405. PubMed
Carlquist M., Frejd T., Gorwa-Grauslund M.F. Flavonoids as inhibitors of human carbonyl reductase 1. Chem. Biol. Interact. 2008;174:98–108. doi: 10.1016/j.cbi.2008.05.021. PubMed DOI
Boušová I., Skálová L. Inhibition and induction of glutathione S-transferases by flavonoids: Possible pharmacological and toxicological consequences. Drug Metab. Rev. 2012;44:267–286. doi: 10.3109/03602532.2012.713969. PubMed DOI
Bártíková H., Skálová L., Dršata J., Boušová I. Interaction of anthocyanins with drug-metabolizing and antioxidant enzymes. Curr. Med. Chem. 2013;20:4665–4679. doi: 10.2174/09298673113209990153. PubMed DOI
Testa B., Kramer S.D. The biochemistry of drug metabolism-an introduction Part 4. Reactions of conjugation and their enzymes. Chem. Biodivers. 2008;5:2171–2336. PubMed
Ajiboye T.O., Salawu N.A., Yakubu M.T., Oladiji A.T., Akanji M.A., Okogun J.I. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract. Drug Chem. Toxicol. 2011;34:109–115. doi: 10.3109/01480545.2010.536767. PubMed DOI
Boateng J., Verghese M., Shackelford L., Walker L.T., Khatiwada J., Ogutu S., Williams D.S., Jones J., Guyton M., Asiamah D., et al. Selected fruits reduce azoxymethane (AOM)-induced aberrant crypt foci (ACF) in Fisher 344 male rats. Food Chem. Toxicol. 2007;45:725–732. doi: 10.1016/j.fct.2006.10.019. PubMed DOI
Hakkinen S.H., Karenlampi S.O., Heinonen I.M., Mykkanen H.M., Torronen A.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem. 1999;47:2274–2279. doi: 10.1021/jf9811065. PubMed DOI
Van der Logt E.M.J., Roelofs H.M.J., Nagengast F.M., Peters W.H.M. Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens. Carcinogenesis. 2003;24:1651–1656. doi: 10.1093/carcin/bgg117. PubMed DOI
Hebbar V., Shen G., Hu R., Kim B.R., Chen C., Korytko P.J., Crowell J.A., Levine B.S., Kong A.N. Toxicogenomics of resveratrol in rat liver. Life Sci. 2005;76:2299–2314. doi: 10.1016/j.lfs.2004.10.039. PubMed DOI
Maier T., Guell M., Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009;583:3966–3973. doi: 10.1016/j.febslet.2009.10.036. PubMed DOI
Gillette J. Techniques for studying drug metabolism in vitro. In: La Du B.N., Mandel H.G., Way E., editors. Fundamentals of Drug Metabolism and Drug Disposition. The Williams and Wilkins Company; Baltimore, MA, USA: 1971. pp. 400–418.
Weaver R.J., Thompson S., Smith G., Dickins M., Elcombe C.R., Mayer R.T., Burke M.D. A comparative-study of constitutive and induced alkoxyresorufin O-dealkylation and individual cytochrome-P450 forms in cynomolgus monkey (macaca-fascicularis), human, mouse, rat and hamster liver-microsomes. Biochem. Pharmacol. 1994;47:763–773. doi: 10.1016/0006-2952(94)90475-8. PubMed DOI
Maté L., Virkel G., Lifschitz A., Ballent M., Lanusse C. Hepatic and extra-hepatic metabolic pathways involved in flubendazole biotransformation in sheep. Biochem. Pharmacol. 2008;76:773–783. doi: 10.1016/j.bcp.2008.07.002. PubMed DOI
Habig W.H., Jakoby W.B. Glutathione S-transferases (rat and human) Methods Enzymol. 1981;77:218–231. PubMed
Mizuma T., Machida M., Hayashi M., Awazu S. Correlation of drug conjugative metabolism rates between in vivo and in vitro: Glucuronidation and sulfation of p-nitrophenol as a model compound in rat. J. Pharmacobiodyn. 1982;5:811–817. doi: 10.1248/bpb1978.5.811. PubMed DOI
Laemmli U.K. Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI