Identification of Novel Loci and New Risk Variant in Known Loci for Colorectal Cancer Risk in East Asians
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
Grantová podpora
R01 CA067941
NCI NIH HHS - United States
U01 HG004438
NHGRI NIH HHS - United States
U01 HG004446
NHGRI NIH HHS - United States
R01 CA042182
NCI NIH HHS - United States
HHSN268201100003I
NHLBI NIH HHS - United States
P01 CA196569
NCI NIH HHS - United States
U19 CA148107
NCI NIH HHS - United States
U01 CA067941
NCI NIH HHS - United States
R01 CA059045
NCI NIH HHS - United States
HHSN268201100001I
NHLBI NIH HHS - United States
R01 CA197350
NCI NIH HHS - United States
10124
Cancer Research UK - United Kingdom
R01 CA076366
NCI NIH HHS - United States
R01 CA188214
NCI NIH HHS - United States
R35 CA197735
NCI NIH HHS - United States
C570/A16491
Cancer Research UK - United Kingdom
U10 CA037429
NCI NIH HHS - United States
R01 CA114347
NCI NIH HHS - United States
R01 CA072520
NCI NIH HHS - United States
R01 CA082729
NCI NIH HHS - United States
P01 CA087969
NCI NIH HHS - United States
P30 CA015704
NCI NIH HHS - United States
HHSN268201100004I
NHLBI NIH HHS - United States
P30 CA006973
NCI NIH HHS - United States
K05 CA154337
NCI NIH HHS - United States
C8221/A19170
Cancer Research UK - United Kingdom
P01 CA055075
NCI NIH HHS - United States
R37 CA070867
NCI NIH HHS - United States
R01 CA151993
NCI NIH HHS - United States
HHSN268201100046C
NHLBI NIH HHS - United States
P30 DK034987
NIDDK NIH HHS - United States
R01 CA048998
NCI NIH HHS - United States
U01 CA137088
NCI NIH HHS - United States
R01 CA189184
NCI NIH HHS - United States
U01 CA167552
NCI NIH HHS - United States
HHSN268201100003C
WHI NIH HHS - United States
MR/N003284/1
Medical Research Council - United Kingdom
Z01 CP010200
Intramural NIH HHS - United States
UM1 CA173640
NCI NIH HHS - United States
U01 CA164930
NCI NIH HHS - United States
R01 CA092585
NCI NIH HHS - United States
R01 CA066635
NCI NIH HHS - United States
R21 CA191312
NCI NIH HHS - United States
U01 CA206110
NCI NIH HHS - United States
1000143
Medical Research Council - United Kingdom
HHSN268201200008C
NHLBI NIH HHS - United States
R01 CA137178
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
U01 CA167551
NCI NIH HHS - United States
P30 CA076292
NCI NIH HHS - United States
R01 CA064277
NCI NIH HHS - United States
P30 CA014089
NCI NIH HHS - United States
G0401527
Medical Research Council - United Kingdom
R01 CA148667
NCI NIH HHS - United States
R01 CA081488
NCI NIH HHS - United States
HHSN271201100004C
NIA NIH HHS - United States
R01 CA124558
NCI NIH HHS - United States
R01 CA201407
NCI NIH HHS - United States
R01 CA063464
NCI NIH HHS - United States
P01 CA033619
NCI NIH HHS - United States
UM1 CA186107
NCI NIH HHS - United States
MR/M012190/1
Medical Research Council - United Kingdom
HHSN268201100002C
WHI NIH HHS - United States
R01 CA207371
NCI NIH HHS - United States
R03 CA153323
NCI NIH HHS - United States
G1000143
Medical Research Council - United Kingdom
16561
Cancer Research UK - United Kingdom
P30 CA068485
NCI NIH HHS - United States
R01 CA060987
NCI NIH HHS - United States
T32 ES013678
NIEHS NIH HHS - United States
R01 CA136726
NCI NIH HHS - United States
P30 CA016058
NCI NIH HHS - United States
14136
Cancer Research UK - United Kingdom
UM1 CA167552
NCI NIH HHS - United States
K05 CA152715
NCI NIH HHS - United States
U01 CA122839
NCI NIH HHS - United States
HHSN261201500005C
NCI NIH HHS - United States
HHSN268201100002I
NHLBI NIH HHS - United States
U01 CA084968
NCI NIH HHS - United States
KL2 TR000421
NCATS NIH HHS - United States
U01 CA074783
NCI NIH HHS - United States
R35 CA253185
NCI NIH HHS - United States
UM1 CA182910
NCI NIH HHS - United States
P50 CA127003
NCI NIH HHS - United States
R01 CA158473
NCI NIH HHS - United States
UM1 CA182883
NCI NIH HHS - United States
K07 CA190673
NCI NIH HHS - United States
HHSN268201200008I
NHLBI NIH HHS - United States
R37 CA054281
NCI NIH HHS - United States
HHSN268201100001C
WHI NIH HHS - United States
HHSN268201100004C
WHI NIH HHS - United States
R01 CA097325
NCI NIH HHS - United States
10119
Cancer Research UK - United Kingdom
PubMed
31826910
PubMed Central
PMC7571256
DOI
10.1158/1055-9965.epi-19-0755
PII: 1055-9965.EPI-19-0755
Knihovny.cz E-zdroje
- MeSH
- Asijci genetika MeSH
- celogenomová asociační studie MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- genetické lokusy * MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory epidemiologie genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 1 genetika MeSH
- mutace INDEL MeSH
- rizikové faktory MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- vazebná nerovnováha MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Geografické názvy
- Čína epidemiologie MeSH
- Japonsko epidemiologie MeSH
- Korejská republika epidemiologie MeSH
BACKGROUND: Risk variants identified so far for colorectal cancer explain only a small proportion of familial risk of this cancer, particularly in Asians. METHODS: We performed a genome-wide association study (GWAS) of colorectal cancer in East Asians, including 23,572 colorectal cancer cases and 48,700 controls. To identify novel risk loci, we selected 60 promising risk variants for replication using data from 58,131 colorectal cancer cases and 67,347 controls of European descent. To identify additional risk variants in known colorectal cancer loci, we performed conditional analyses in East Asians. RESULTS: An indel variant, rs67052019 at 1p13.3, was found to be associated with colorectal cancer risk at P = 3.9 × 10-8 in Asians (OR per allele deletion = 1.13, 95% confidence interval = 1.08-1.18). This association was replicated in European descendants using a variant (rs2938616) in complete linkage disequilibrium with rs67052019 (P = 7.7 × 10-3). Of the remaining 59 variants, 12 showed an association at P < 0.05 in the European-ancestry study, including rs11108175 and rs9634162 at P < 5 × 10-8 and two variants with an association near the genome-wide significance level (rs60911071, P = 5.8 × 10-8; rs62558833, P = 7.5 × 10-8) in the combined analyses of Asian- and European-ancestry data. In addition, using data from East Asians, we identified 13 new risk variants at 11 loci reported from previous GWAS. CONCLUSIONS: In this large GWAS, we identified three novel risk loci and two highly suggestive loci for colorectal cancer risk and provided evidence for potential roles of multiple genes and pathways in the etiology of colorectal cancer. In addition, we showed that additional risk variants exist in many colorectal cancer risk loci identified previously. IMPACT: Our study provides novel data to improve the understanding of the genetic basis for colorectal cancer risk.
Broad Institute of Harvard and MIT Cambridge Massachusetts
Case Comprehensive Cancer Center Case Western Reserve University Cleveland Ohio
CIBER Epidemiología y Salud Pública Madrid Spain
Department of Biostatistics University of Washington Seattle Washington
Department of Clinical Genetics Karolinska University Hospital Stockholm Sweden
Department of Clinical Sciences Faculty of Medicine University of Barcelona Barcelona Spain
Department of Epidemiology Nagoya University Graduate School of Medicine Nagoya Japan
Department of Epidemiology University of Washington Seattle Washington
Department of Medicine 1 University Hospital Dresden Technische Universität Dresden Dresden Germany
Department of Medicine Weill Cornell Medical College New York New York
Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
Department of Preventive Medicine Chonnam National University Medical School Gwangju South Korea
Department of Preventive Medicine Seoul National University College of Medicine Seoul South Korea
Department of Public Health and Primary Care University of Cambridge Cambridge United Kingdom
Department of Radiation Sciences Oncology Unit Umeå University Umeå Sweden
Division of Cancer Epidemiology and Genetics National Cancer Institute NIH Bethesda Maryland
Division of Human Nutrition Wageningen University and Research Wageningen the Netherlands
Division of Molecular and Clinical Epidemiology Aichi Cancer Center Research Institute Nagoya Japan
Faculty of Medicine and Biomedical Center in Pilsen Charles University Pilsen Czech Republic
General Surgery Department Tangdu Hospital 4th Military Medical University Xi'an Shaanxi China
Institute for Health Promotion Graduate School of Public Health Yonsei University Seoul Korea
Institute of Cancer Research Department of Medicine 1 Medical University Vienna Vienna Austria
Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
Jeonnam Regional Cancer Center Chonnam National University Hwasun Hospital Hwasun South Korea
Laboratory for Statistical Analysis RIKEN Center for Integrative Medical Sciences Kanagawa Japan
Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle Washington
School of Public Health Sun Yat sen University Guangzhou China
School of Public Health University of Washington Seattle Washington
State Key Laboratory of Oncology in South China Cancer Center Sun Yat sen University Guangzhou China
University of Hawaii Cancer Center Honolulu Hawaii
University of Southern California Preventative Medicine Los Angeles California
Zobrazit více v PubMed
Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol 2017;3:524–48. PubMed PMC
Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, et al. Familial risk and heritability of cancer among twins in Nordic countries. JAMA 2016;315:68–76. PubMed PMC
Peters U, Bien S, Zubair N. Genetic architecture of colorectal cancer. Gut 2015; 64:1623–36. PubMed PMC
Adam R, Spier I, Zhao B, Kloth M, Marquez J, Hinrichsen I, et al. Exome sequencing identifies Biallelic MSH3 germline mutations as a recessive subtype of colorectal adenomatous polyposis. Am J Hum Genet 2016;99:337–51. PubMed PMC
Weren RD, Ligtenberg MJ, Kets CM, de Voer RM, Verwiel ET, Spruijt L, et al. A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat Genet 2015;47:668–71. PubMed
Jia WH, Zhang B, Matsuo K, Shin A, Xiang YB, Jee SH, et al. Genome-wide association analyses in East Asians identify new susceptibility loci for colorectal cancer. Nat Genet 2013;45:191–6. PubMed PMC
Zeng C, Matsuda K, Jia WH, Chang J, Kweon SS, Xiang YB, et al. Identification of susceptibility loci and genes for colorectal cancer risk. Gastroenterology 2016; 150:1633–45. PubMed PMC
Zhang B, Jia WH, Matsuda K, Kweon SS, Matsuo K, Xiang YB, et al. Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk. Nat Genet 2014;46:533–42. PubMed PMC
Schmit SL, Edlund CK, Schumacher FR, Gong J, Harrison TA, Huyghe JR, et al. Novel common genetic susceptibility loci for colorectal cancer. J Natl Cancer Inst 2019;111:146–57. PubMed PMC
Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet 2019; 51:76–87. PubMed PMC
Lu Y, Kweon SS, Tanikawa C, Jia WH, Xiang YB, Cai Q, et al. Large-scale genome-wide association study of East Asians identifies loci associated with risk for colorectal cancer. Gastroenterology 2019;156:1455–66. PubMed PMC
Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, Whiffin N, et al. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet 2012;44:770–6. PubMed PMC
Law PJ, Timofeeva M, Fernandez-Rozadilla C, Broderick P, Studd J, Fernandez-Tajes J, et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat Commun 2019;10:2154. PubMed PMC
Zhang B, Jia WH, Matsuo K, Shin A, Xiang YB, Matsuda K, et al. Genome-wide association study identifies a new SMAD7 risk variant associated with colorectal cancer risk in East Asians. Int J Cancer 2014;135:948–55. PubMed PMC
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006;38:904–9. PubMed
Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics 2016;32:1423–6. PubMed PMC
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010;26:2190–1. PubMed PMC
Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. Ann Intern Med 1997;127:820–6. PubMed
Yang J, Ferreira T, Morris AP, Medland SE; Genetic Investigation of ANthropometric Traits (GIANT) Consortium; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet 2012;44:369–75. PubMed PMC
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010;38: e164. PubMed PMC
Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013;Chapter 7: Unit7.20. PubMed PMC
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009;4:1073–81. PubMed
Schmidt EM, Zhang J, Zhou W, Chen J, Mohlke KL, Chen YE, et al. GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach. Bioinformatics 2015;31:2601–6. PubMed PMC
GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 2015;348:648–60. PubMed PMC
Wang H, Burnett T, Kono S, Haiman CA, Iwasaki M, Wilkens LR, et al. Trans-ethnic genome-wide association study of colorectal cancer identifies a new susceptibility locus in VTI1A. Nat Commun 2014;5:4613. PubMed PMC
Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res 2016;44:D877–81. PubMed PMC
Kunzelmann K. Ion channels and cancer. J Membr Biol 2005;205:159–73. PubMed
Leblanc N. Kv3.4, a key signalling molecule controlling the cell cycle and proliferation of human arterial smooth muscle cells. Cardiovasc Res 2010;86: 351–2. PubMed
Huang X, Jan LY. Targeting potassium channels in cancer. J Cell Biol 2014;206: 151–62. PubMed PMC
Pardo LA, Stuhmer W. The roles of K(+) channels in cancer. Nat Rev Cancer 2014;14:39–48. PubMed
Eeles RA, Kote-Jarai Z, Al Olama AA, Giles GG, Guy M, Severi G, et al. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat Genet 2009;41:1116–21. PubMed PMC
Pena C, Cespedes MV, Lindh MB, Kiflemariam S, Mezheyeuski A, Edqvist PH, et al. STC1 expression by cancer-associated fibroblasts drives metastasis of colorectal cancer. Cancer Res 2013;73:1287–97. PubMed
Tamura S, Oshima T, Yoshihara K, Kanazawa A, Yamada T, Inagaki D, et al. Clinical significance of STC1 gene expression in patients with colorectal cancer. Anticancer Res 2011;31:325–9. PubMed
Bai DS, Wu C, Yang LX, Zhang C, Zhang PF, He YZ, et al. UBAP2 negatively regulates the invasion of hepatocellular carcinoma cell by ubiquitinating and degradating Annexin A2. Oncotarget 2016;7:32946–55. PubMed PMC
Ren L, Liu Y, Guo L, Wang H, Ma L, Zeng M, et al. Loss of Smu1 function derepresses DNA replication and over-activates ATR-dependent replication checkpoint. Biochem Biophys Res Commun 2013;436:192–8. PubMed
Hwangbo DS, Biteau B, Rath S, Kim J, Jasper H. Control of apoptosis by Drosophila DCAF12. Dev Biol 2016;413:50–9. PubMed PMC
Kwon O, Kwak D, Ha SH, Jeon H, Park M, Chang Y, et al. Nudix-type motif 2 contributes to cancer proliferation through the regulation of Rag GTPase-mediated mammalian target of rapamycin complex 1 localization. Cell Signal 2017;32:24–35. PubMed
Oka K, Suzuki T, Onodera Y, Miki Y, Takagi K, Nagasaki S, et al. Nudix-type motif 2 in human breast carcinoma: a potent prognostic factor associated with cell proliferation. Int J Cancer 2011;128:1770–82. PubMed
Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 2013;45:353–61. PubMed PMC
Wilson BD, Ii M, Park KW, Suli A, Sorensen LK, Larrieu-Lahargue F, et al. Netrins promote developmental and therapeutic angiogenesis. Science 2006;313: 640–4. PubMed PMC
Eveno C, Broqueres-You D, Feron JG, Rampanou A, Tijeras-Raballand A, Ropert S, et al. Netrin-4 delays colorectal cancer carcinomatosis by inhibiting tumor angiogenesis. Am J Pathol 2011;178:1861–9. PubMed PMC
Eveno C, Contreres JO, Hainaud P, Nemeth J, Dupuy E, Pocard M. Netrin-4 overexpression suppresses primary and metastatic colorectal tumor progression. Oncol Rep 2013;29:73–8. PubMed
Lejmi E, Leconte L, Pedron-Mazoyer S, Ropert S, Raoul W, Lavalette S, et al. Netrin-4 inhibits angiogenesis via binding to neogenin and recruitment of Unc5B. Proc Natl Acad Sci U S A 2008;105:12491–6. PubMed PMC
Kussel-Andermann P, El-Amraoui A, Safieddine S, Nouaille S, Perfettini I, Lecuit M, et al. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J 2000;19:6020–9. PubMed PMC
Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, et al. Identification of genetic susceptibility loci for colorectal tumors in a genomewide meta-analysis. Gastroenterology 2013;144:799–807. PubMed PMC
Dong L,Lyu X,Faleti OD,He ML.Thespecial stemness functions ofTbx3 instem cells and cancer development. Semin Cancer Biol 2019;57:105–10. PubMed
Russell R, Ilg M, Lin Q, Wu G, Lechel A, Bergmann W, et al. A dynamic role of TBX3 in the pluripotency circuitry. Stem Cell Reports 2015;5:1155–70. PubMed PMC
Whiffin N, Hosking FJ, Farrington SM, Palles C, Dobbins SE, Zgaga L, et al. Identification of susceptibility loci for colorectal cancer in a genome-wide metaanalysis. Hum Mol Genet 2014;23:4729–37. PubMed PMC
Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet 2008;40:623–30. PubMed
Study C, Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet 2008;40:1426–35. PubMed PMC
Tomlinson IP, Carvajal-Carmona LG, Dobbins SE, Tenesa A, Jones AM, Howarth K, et al. Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet 2011;7:e1002105. PubMed PMC
Schumacher FR, Schmit SL, Jiao S, Edlund CK, Wang H, Zhang B, et al. Genomewide association study of colorectal cancer identifies six new susceptibility loci. Nat Commun 2015;6:7138. PubMed PMC