Endogenous lentivirus in Malayan colugo (Galeopterus variegatus), a close relative of primates
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25280529
PubMed Central
PMC4198772
DOI
10.1186/s12977-014-0084-x
PII: s12977-014-0084-x
Knihovny.cz E-zdroje
- MeSH
- endogenní retroviry klasifikace genetika MeSH
- fylogeneze MeSH
- Lentivirus klasifikace genetika MeSH
- molekulární evoluce MeSH
- pořadí genů MeSH
- savci virologie MeSH
- virové geny MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Malajsie MeSH
BACKGROUND: A significant fraction of mammalian genomes is composed of endogenous retroviral (ERV) sequences that are formed by germline infiltration of various retroviruses. In contrast to other retroviral genera, lentiviruses only rarely form ERV copies. We performed a computational search aimed at identification of novel endogenous lentiviruses in vertebrate genomes. FINDINGS: Using the in silico strategy, we have screened 104 publicly available vertebrate genomes for the presence of endogenous lentivirus sequences. In addition to the previously described cases, the search revealed the presence of endogenous lentivirus in the genome of Malayan colugo (Galeopterus variegatus). At least three complete copies of this virus, denoted ELVgv, were detected in the colugo genome, and approximately one hundred solo LTR sequences. The assembled consensus sequence of ELVgv had typical lentivirus genome organization including three predicted accessory genes. Phylogenetic analysis placed this virus as a distinct subgroup within the lentivirus genus. The time of insertion into the dermopteran lineage was estimated to be more than thirteen million years ago. CONCLUSIONS: We report the discovery of the first endogenous lentivirus in the mammalian order Dermoptera, which is a taxon close to the Primates. Lentiviruses have infiltrated the mammalian germline several times across millions of years. The colugo virus described here represents possibly the oldest documented endogenization event and its discovery can lead to new insights into lentivirus evolution. This is also the first report of an endogenous lentivirus in an Asian mammal, indicating a long-term presence of this retrovirus family in Asian continent.
Zobrazit více v PubMed
Johnson WE. A proviral puzzle with a prosimian twist. Proc Natl Acad Sci U S A. 2008;105(51):20051–20052. doi: 10.1073/pnas.0811419106. PubMed DOI PMC
Stoye JP. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat Rev Microbiol. 2012;10(6):395–406. PubMed
Katzourakis A, Tristem M, Pybus OG, Gifford RJ. Discovery and analysis of the first endogenous lentivirus. Proc Natl Acad Sci U S A. 2007;104(15):6261–6265. doi: 10.1073/pnas.0700471104. PubMed DOI PMC
Gifford RJ, Katzourakis A, Tristem M, Pybus OG, Winters M, Shafer RW. A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc Natl Acad Sci U S A. 2008;105(51):20362–20367. doi: 10.1073/pnas.0807873105. PubMed DOI PMC
Gilbert C, Maxfield DG, Goodman SM, Feschotte C. Parallel germline infiltration of a lentivirus in two Malagasy lemurs. PLoS Genet. 2009;5(3):e1000425. doi: 10.1371/journal.pgen.1000425. PubMed DOI PMC
Cui J, Holmes EC. Endogenous lentiviruses in the ferret genome. J Virol. 2012;86(6):3383–3385. doi: 10.1128/JVI.06652-11. PubMed DOI PMC
Keckesova Z, Ylinen LM, Towers GJ, Gifford RJ, Katzourakis A. Identification of a RELIK orthologue in the European hare (Lepus europaeus) reveals a minimum age of 12 million years for the lagomorph lentiviruses. Virology. 2009;384(1):7–11. doi: 10.1016/j.virol.2008.10.045. PubMed DOI PMC
Han GZ, Worobey M. Endogenous lentiviral elements in the weasel family (Mustelidae) Mol Biol Evol. 2012;29(10):2905–2908. doi: 10.1093/molbev/mss126. PubMed DOI PMC
Belshaw R, Watson J, Katzourakis A, Howe A, Woolven-Allen J, Burt A, Tristem M. Rate of recombinational deletion among human endogenous retroviruses. J Virol. 2007;81(17):9437–9442. doi: 10.1128/JVI.02216-06. PubMed DOI PMC
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–3415. doi: 10.1093/nar/gkg595. PubMed DOI PMC
Kohany O, Gentles AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics. 2006;7:474. doi: 10.1186/1471-2105-7-474. PubMed DOI PMC
Petersen TN, Brunak S, Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Duckert P, Brunak S, Blom N. Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel. 2004;17(1):107–112. doi: 10.1093/protein/gzh013. PubMed DOI
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–2739. doi: 10.1093/molbev/msr121. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Dimmic MW, Rest JS, Mindell DP, Goldstein RA. rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. J Mol Evol. 2002;55(1):65–73. doi: 10.1007/s00239-001-2304-y. PubMed DOI
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) 2001;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Johnson WE, Coffin JM. Constructing primate phylogenies from ancient retrovirus sequences. Proc Natl Acad Sci U S A. 1999;96(18):10254–10260. doi: 10.1073/pnas.96.18.10254. PubMed DOI PMC
Kumar S, Subramanian S. Mutation rates in mammalian genomes. Proc Natl Acad Sci U S A. 2002;99(2):803–808. doi: 10.1073/pnas.022629899. PubMed DOI PMC
Chinwalla AT, Cook LL, Delehaunty KD, Fewell GA, Fulton LA, Fulton RS, Graves TA, Hillier LW, Mardis ER, McPherson JD, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520–562. doi: 10.1038/nature01262. PubMed DOI
Janečka JE, Helgen KM, Lim NT-L, Baba M, Izawa M, Boeadi, Murphy WJ. Evidence for multiple species of Sunda colugo. Curr Biol. 2008;18(21):R1001–R1002. doi: 10.1016/j.cub.2008.09.005. PubMed DOI
Martin RD. Colugos: obscure mammals glide into the evolutionary limelight. J Biol. 2008;7(4):13. doi: 10.1186/jbiol74. PubMed DOI PMC
Nie WH, Fu BY, O’Brien PCM, Wang JH, Su WT, Tanomtong A, Volobouev V, Ferguson-Smith MA, Yang FT. Flying lemurs - the ‘flying tree shrews’? molecular cytogenetic evidence for a Scandentia-Dermoptera sister clade. BMC Biol. 2008;6:11. doi: 10.1186/1741-7007-6-18. PubMed DOI PMC
Janecka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ. Molecular and genomic data identify the closest living relative of primates. Science (New York, NY) 2007;318(5851):792–794. doi: 10.1126/science.1147555. PubMed DOI
Hedges SB, Dudley J, Kumar S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics (Oxford, England) 2006;22(23):2971–2972. doi: 10.1093/bioinformatics/btl505. PubMed DOI
The Current View of Retroviruses as Seen from the Shoulders of a Giant