Deltaretroviruses have circulated since at least the Paleogene and infected a broad range of mammalian species
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_UU_12014/12
Medical Research Council - United Kingdom
PubMed
31775783
PubMed Central
PMC6882180
DOI
10.1186/s12977-019-0495-9
PII: 10.1186/s12977-019-0495-9
Knihovny.cz E-zdroje
- Klíčová slova
- BLV, Deltaretrovirus, Endogenous retrovirus, Evolution, HTLV, Leukemia, PTLV, Paleovirology, Retrovirus,
- MeSH
- Deltaretrovirus genetika MeSH
- endogenní retroviry genetika izolace a purifikace MeSH
- fylogeneze MeSH
- genom virový MeSH
- geny pX MeSH
- hostitelská specificita * MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- paleontologie MeSH
- savci virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Deltaretrovirus genus of retroviruses (family Retroviridae) includes the human T cell leukemia viruses and bovine leukemia virus (BLV). Relatively little is known about the biology and evolution of these viruses, because only a few species have been identified and the genomic 'fossil record' is relatively sparse. Here, we report the discovery of multiple novel endogenous retroviruses (ERVs) derived from ancestral deltaretroviruses. These sequences-two of which contain complete or near complete internal coding regions-reside in genomes of several distinct mammalian orders, including bats, carnivores, cetaceans, and insectivores. We demonstrate that two of these ERVs contain unambiguous homologs of the tax gene, indicating that complex gene regulation has ancient origins within the Deltaretrovirus genus. ERVs demonstrate that the host range of the deltaretrovirus genus is much more extensive than suggested by the relatively small number of exogenous deltaretroviruses described so far, and allow the evolutionary timeline of deltaretrovirus-mammal interaction to be more accurately calibrated.
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
MRC University of Glasgow Centre for Virus Research 464 Bearsden Rd Bearsden Glasgow G61 1QH UK
Zobrazit více v PubMed
Gessain A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol. 2012;3:388. doi: 10.3389/fmicb.2012.00388. PubMed DOI PMC
Wolfe ND, Heneine W, Carr JK, Garcia AD, Shanmugam V, Tamoufe U, et al. Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc Natl Acad Sci USA. 2005;102:7994–7999. doi: 10.1073/pnas.0501734102. PubMed DOI PMC
Barez P-Y, de Brogniez A, Carpentier A, Gazon H, Gillet N, Gutiérrez G, et al. Recent advances in BLV research. Viruses. 2015;7:6080–6088. doi: 10.3390/v7112929. PubMed DOI PMC
Feschotte C, Gilbert C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet. 2012;13:283–296. doi: 10.1038/nrg3199. PubMed DOI
Belshaw R, Watson J, Katzourakis A, Howe A, Woolven-Allen J, Burt A, et al. Rate of recombinational deletion among human endogenous retroviruses. J Virol. 2007;81:9437–9442. doi: 10.1128/JVI.02216-06. PubMed DOI PMC
Diehl WE, Patel N, Halm K, Johnson WE. Tracking interspecies transmission and long-term evolution of an ancient retrovirus using the genomes of modern mammals. Elife. 2016;5:e12704. doi: 10.7554/eLife.12704. PubMed DOI PMC
Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet. 2010 doi: 10.1371/journal.pgen.1001191. PubMed DOI PMC
Farkašová H, Hron T, Pačes J, Hulva P, Benda P, Gifford RJ, et al. Discovery of an endogenous deltaretrovirus in the genome of long-fingered bats (Chiroptera: miniopteridae) Proc Natl Acad Sci USA. 2017;114:3145–3150. doi: 10.1073/pnas.1621224114. PubMed DOI PMC
Hron T, Farkašová H, Gifford RJ, Benda P, Hulva P, Görföl T, et al. Remnants of an ancient deltaretrovirus in the genomes of horseshoe bats (Rhinolophidae) Viruses. 2018 doi: 10.3390/v10040185. PubMed DOI PMC
Martinez MP, Al-Saleem J, Green PL. Comparative virology of HTLV-1 and HTLV-2. Retrovirology. 2019;16:21. doi: 10.1186/s12977-019-0483-0. PubMed DOI PMC
Halin M, Douceron E, Clerc I, Journo C, Ko NL, Landry S, et al. Human T-cell leukemia virus type 2 produces a spliced antisense transcript encoding a protein that lacks a classic bZIP domain but still inhibits Tax2-mediated transcription. Blood. 2009;114:2427–2438. doi: 10.1182/blood-2008-09-179879. PubMed DOI PMC
Hron T, Fábryová H, Pačes J, Elleder D. Endogenous lentivirus in Malayan colugo (Galeopterus variegatus), a close relative of primates. Retrovirology. 2014 doi: 10.1186/s12977-014-0084-x. PubMed DOI PMC
Gilbert C, Maxfield DG, Goodman SM, Feschotte C. Parallel germline infiltration of a lentivirus in two Malagasy lemurs. PLoS Genet. 2009;5:e1000425. doi: 10.1371/journal.pgen.1000425. PubMed DOI PMC
Gifford RJ, Katzourakis A, Tristem M, Pybus OG, Winters M, Shafer RW. A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc Natl Acad Sci. 2008 doi: 10.1073/pnas.0807873105. PubMed DOI PMC
Cui J, Holmes EC. Endogenous lentiviruses in the ferret genome. J Virol. 2012;86:3383–3385. doi: 10.1128/JVI.06652-11. PubMed DOI PMC
Han G-Z, Worobey M. Endogenous lentiviral elements in the weasel family (Mustelidae) Mol Biol Evol. 2012;29:2905–2908. doi: 10.1093/molbev/mss126. PubMed DOI PMC
Katzourakis A, Tristem M, Pybus OG, Gifford RJ. Discovery and analysis of the first endogenous lentivirus. Proc Natl Acad Sci. 2007 doi: 10.1073/pnas.0700471104. PubMed DOI PMC
Rowe HM, Friedli M, Offner S, Verp S, Mesnard D, Marquis J, et al. De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET. Development. 2013;140:519–529. doi: 10.1242/dev.087585. PubMed DOI PMC
Robbez-Masson L, Tie CHC, Conde L, Tunbak H, Husovsky C, Tchasovnikarova IA, et al. The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes. Genome Res. 2018;28:836–845. doi: 10.1101/gr.228171.117. PubMed DOI PMC
Hedges SB, Marin J, Suleski M, Paymer M, Kumar S. Tree of life reveals clock-like speciation and diversification. Mol Biol Evol. 2015;32:835–845. doi: 10.1093/molbev/msv037. PubMed DOI PMC
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2017;45:D37–D42. doi: 10.1093/nar/gkw1070. PubMed DOI PMC
Zhu H, Dennis T, Hughes J, Gifford RJ. Database-integrated genome screening (DIGS): exploring genomes heuristically using sequence similarity search tools and a relational database. BioRxiv. 2018 doi: 10.1101/246835. DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Birney E, Clamp M, Durbin R. GeneWise and genomewise. Genome Res. 2004;14:988–995. doi: 10.1101/gr.1865504. PubMed DOI PMC
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015;43:W7–W14. doi: 10.1093/nar/gkv318. PubMed DOI PMC
Landan G, Graur D. Local reliability measures from sets of co-optimal multiple sequence alignments. Pac Symp Biocomput. 2008;2008:15–24. PubMed