Discovery of an endogenous Deltaretrovirus in the genome of long-fingered bats (Chiroptera: Miniopteridae)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_UU_12014/12
Medical Research Council - United Kingdom
PubMed
28280099
PubMed Central
PMC5373376
DOI
10.1073/pnas.1621224114
PII: 1621224114
Knihovny.cz E-zdroje
- Klíčová slova
- Chiroptera, Deltaretroviruses, endogenous retroviruses,
- MeSH
- Chiroptera klasifikace genetika MeSH
- Deltaretrovirus genetika MeSH
- endogenní retroviry genetika MeSH
- fylogeneze MeSH
- genom * MeSH
- genomika metody MeSH
- konformace nukleové kyseliny MeSH
- konsenzuální sekvence MeSH
- molekulární evoluce MeSH
- otevřené čtecí rámce MeSH
- sekvence nukleotidů MeSH
- virové geny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Retroviruses can create endogenous forms on infiltration into the germline cells of their hosts. These forms are then vertically transmitted and can be considered as genetic fossils of ancient viruses. All retrovirus genera, with the exception of deltaretroviruses, have had their representation identified in the host genome as a virus fossil record. Here we describe an endogenous Deltaretrovirus, identified in the germline of long-fingered bats (Miniopteridae). A single, heavily deleted copy of this retrovirus has been found in the genome of miniopterid species, but not in the genomes of the phylogenetically closest bat families, Vespertilionidae and Cistugonidae. Therefore, the endogenization occurred in a time interval between 20 and 45 million years ago. This discovery closes the last major gap in the retroviral fossil record and provides important insights into the history of deltaretroviruses in mammals.
Department of Biology and Ecology University of Ostrava Ostrava 71000 Czech Republic
Department of Zoology Charles University Prague 12844 Czech Republic
Department of Zoology National Museum Prague 11579 Czech Republic
MRC University of Glasgow Centre for Virus Research Glasgow G12 8TA United Kingdom
Zobrazit více v PubMed
Poiesz BJ, et al. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA. 1980;77(12):7415–7419. PubMed PMC
Coffin JM. The discovery of HTLV-1, the first pathogenic human retrovirus. Proc Natl Acad Sci USA. 2015;112(51):15525–15529. PubMed PMC
Barez PY, et al. Recent advances in BLV research. Viruses. 2015;7(11):6080–6088. PubMed PMC
Miller JM, Miller LD, Olson C, Gillette KG. Virus-like particles in phytohemagglutinin-stimulated lymphocyte cultures with reference to bovine lymphosarcoma. J Natl Cancer Inst. 1969;43(6):1297–1305. PubMed
Hayward A, Cornwallis CK, Jern P. Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proc Natl Acad Sci USA. 2015;112(2):464–469. PubMed PMC
Hayward A, Grabherr M, Jern P. Broad-scale phylogenomics provides insights into retrovirus-host evolution. Proc Natl Acad Sci USA. 2013;110(50):20146–20151. PubMed PMC
Johnson WE. Endogenous retroviruses in the genomics era. Annu Rev Virol. 2015;2(1):135–159. PubMed
Hron T, Fábryová H, Pačes J, Elleder D. Endogenous lentivirus in Malayan colugo (Galeopterus variegatus), a close relative of primates. Retrovirology. 2014;11:84. PubMed PMC
Eckalbar WL, et al. Transcriptomic and epigenomic characterization of the developing bat wing. Nat Genet. 2016;48(5):528–536. PubMed PMC
Kypr J, Mrázek J, Reich J. Nucleotide composition bias and CpG dinucleotide content in the genomes of HIV and HTLV 1/2. Biochim Biophys Acta. 1989;1009(3):280–282. PubMed
Yoshida M. Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene. 2005;24(39):5931–5937. PubMed
Currer R, et al. HTLV tax: A fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol. 2012;3:406. PubMed PMC
Aida Y, Murakami H, Takahashi M, Takeshima SN. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol. 2013;4:328. PubMed PMC
Pavesi A, Magiorkinis G, Karlin DG. Viral proteins originated de novo by overprinting can be identified by codon usage: Application to the “gene nursery” of Deltaretroviruses. PLOS Comput Biol. 2013;9(8):e1003162. PubMed PMC
Hedges SB, Dudley J, Kumar S. TimeTree: A public knowledge-base of divergence times among organisms. Bioinformatics. 2006;22(23):2971–2972. PubMed
Lack JB, Roehrs ZP, Stanley CE, Ruedi M, Van Den Bussche RA. Molecular phylogenetics of Myotis indicate familial-level divergence for the genus Cistugo (Chiroptera) J Mammal. 2010;91:976–992.
Miller-Butterworth CM, et al. A family matter: Conclusive resolution of the taxonomic position of the long-fingered bats, miniopterus. Mol Biol Evol. 2007;24(7):1553–1561. PubMed
Johnson WE, Coffin JM. Constructing primate phylogenies from ancient retrovirus sequences. Proc Natl Acad Sci USA. 1999;96(18):10254–10260. PubMed PMC
Kijima TE, Innan H. On the estimation of the insertion time of LTR retrotransposable elements. Mol Biol Evol. 2010;27(4):896–904. PubMed
Zhuo X, Feschotte C. Cross-species transmission and differential fate of an endogenous retrovirus in three mammal lineages. PLoS Pathog. 2015;11(11):e1005279. PubMed PMC
Kumar S, Subramanian S. Mutation rates in mammalian genomes. Proc Natl Acad Sci USA. 2002;99(2):803–808. PubMed PMC
Perelman P, et al. A molecular phylogeny of living primates. PLoS Genet. 2011;7(3):e1001342. PubMed PMC
Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet. 2010;6(11):e1001191. PubMed PMC
Fang J, Wang X, Mu S, Zhang S, Dong D. BGD: A database of bat genomes. PLoS One. 2015;10(6):e0131296. PubMed PMC
Switzer WM, et al. Ancient, independent evolution and distinct molecular features of the novel human T-lymphotropic virus type 4. Retrovirology. 2009;6:9. PubMed PMC
Miller-Butterworth CM, Jacobs DS, Harley EH. Strong population substructure is correlated with morphology and ecology in a migratory bat. Nature. 2003;424(6945):187–191. PubMed
Miller-Butterworth CM, Eick G, Jacobs DS, Schoeman MC, Harley EH. Genetic and phenotypic differences between south African long-fingered bats, with a global miniopterine phylogeny. J Mammal. 2005;86:1121–1135.
Johnson M, et al. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008;36(Web Server issue):W5–W9. PubMed PMC
Smith MF, Patton JL. Variation in mitochondrial cytochrome b sequence in natural populations of South American akodontine rodents (Muridae: Sigmodontinae) Mol Biol Evol. 1991;8(1):85–103. PubMed
Stadelmann B, Lin LK, Kunz TH, Ruedi M. Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol Phylogenet Evol. 2007;43(1):32–48. PubMed
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. PubMed PMC
Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–321. PubMed
Rambaut A, Grassly NC. Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci. 1997;13(3):235–238. PubMed