Determination of critical parameters of drug substance influencing dissolution: a case study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25317424
PubMed Central
PMC4181942
DOI
10.1155/2014/929248
Knihovny.cz E-zdroje
- MeSH
- chemické jevy * MeSH
- mikroskopie elektronová rastrovací MeSH
- rozpustnost MeSH
- uvolňování léčiv * MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The purpose of this study was to specify critical parameters (physicochemical characteristics) of drug substance that can affect dissolution profile/dissolution rate of the final drug product manufactured by validated procedure from various batches of the same drug substance received from different suppliers. The target was to design a sufficiently robust drug substance specification allowing to obtain a satisfactory drug product. For this reason, five batches of the drug substance and five samples of the final peroral drug products were analysed with the use of solid state analysis methods on the bulk level. Besides polymorphism, particle size distribution, surface area, zeta potential, and water content were identified as important parameters, and the zeta potential and the particle size distribution of the drug substance seem to be critical quality attributes affecting the dissolution rate of the drug substance released from the final peroral drug formulation.
Zobrazit více v PubMed
Pharmaceutical Quality for the 21st Century—A Risk based Approach. Food and Drug Administration; 2007.
Guidance for industry: PAT—A framework for innovative pharmaceutical development, manufacturing and quality assurance. Food and Drug Administration, 2004.
Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharmaceutical Research. 2008;25(4):781–791. PubMed
ICH Guideline Q8(R2)—Pharmaceutical development. Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use; 2009.
ICH Guideline Q9—Quality risk management. Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use; 2005.
ICH guideline Q10—Pharmaceutical quality system. Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use; 2008.
ICH Guideline Q11—Development and manufacture of drug substances (chemical entities and biotechnological/biological entities). Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use; 2012.
Varu RK, Khanna A. Opportunities and challenges to implementing Quality by Design approach in generic drug development. Journal of Generic Medicines. 2010;7(1):60–73.
Purohit PJ, Shah KV. Quality by design (QbD): new parameter for quality improvement & pharmaceutical drug development. Pharma Science Monitor. 2013;4:1–19.
Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 1938;60(2):309–319.
Yuan Y, Lee TR. Contact angle and wetting properties. In: Bracco G, Holst B, editors. Surface Science Techniques. Vol. 51. Berlin, Germany: Springer; 2013. pp. 3–34. (Springer Series in Surface Sciences).
Russel WB, Saville DA, Schowalter WR. Colloidal Dispersions. Cambridge, UK: Cambridge University Press; 1989.
Lyklema J. Fundamentals of Interface and Colloid Science. Vol. 2. London, UK: Academic Press; 1995. (Solid-Liquid Interface).
Salis A, Boström M, Medda L, et al. Measurements and theoretical interpretation of points of zero charge/potential of BSA protein. Langmuir. 2011;27(18):11597–11604. PubMed
Chu KR, Lee E, Jeong SH, Park E-S. Effect of particle size on the dissolution behaviors of poorly water-soluble drugs. Archives of Pharmacal Research. 2012;35(7):1187–1195. PubMed
Phadke DS, Eichorst JL. Evaluation of particle size distribution and specific surface area of magnesium stearate. Drug Development and Industrial Pharmacy. 1991;17(6):901–906.
Aulton ME, Taylor K. Aulton's Pharmaceutics: The Design and Manufacture of Medicines. 4th edition. London, UK: Churchill Livingstone/Elsevier; 2013.
Finholt P. Influence of formulation on dissolution rate. In: Leeson LJ, Catensen TJ, editors. Dissolution Technology. Washington, DC, USA: APHA; 1974. p. p. 108.
Behera AL, Sahoo SK, Patil SV. Enhancement of solubility: a pharmaceutical overview. Der Pharmacia Lettre. 2010;2:310–318.
Allen LV, Ansel HC. Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems. 10th edition. Baltimor, Md, USA: Kluwer Academic Publishers; 2013.