An updated insight into the Sialotranscriptome of Triatoma infestans: developmental stage and geographic variations
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
ZIA AI000810
Intramural NIH HHS - United States
AI000810-16
NIAID NIH HHS - United States
PubMed
25474469
PubMed Central
PMC4256203
DOI
10.1371/journal.pntd.0003372
PII: PNTD-D-14-01140
Knihovny.cz E-zdroje
- MeSH
- genová knihovna * MeSH
- slinné proteiny a peptidy genetika metabolismus MeSH
- sliny chemie MeSH
- transkriptom genetika MeSH
- Triatoma genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Jižní Amerika MeSH
- Názvy látek
- slinné proteiny a peptidy MeSH
BACKGROUND: Triatoma infestans is the main vector of Chagas disease in South America. As in all hematophagous arthropods, its saliva contains a complex cocktail that assists blood feeding by preventing platelet aggregation and blood clotting and promoting vasodilation. These salivary components can be immunologically recognized by their vector's hosts and targeted with antibodies that might disrupt blood feeding. These antibodies can be used to detect vector exposure using immunoassays. Antibodies may also contribute to the fast evolution of the salivary cocktail. METHODOLOGY: Salivary gland cDNA libraries from nymphal and adult T. infestans of breeding colonies originating from different locations (Argentina, Chile, Peru and Bolivia), and cDNA libraries originating from F1 populations of Bolivia, were sequenced using Illumina technology. Coding sequences (CDS) were extracted from the assembled reads, the numbers of reads mapped to these CDS, sequences were functionally annotated and polymorphisms determined. MAIN FINDINGS/SIGNIFICANCE: Over five thousand CDS, mostly full length or near full length, were publicly deposited on GenBank. Transcripts that were over 10-fold overexpressed from different geographical regions, or from different developmental stages were identified. Polymorphisms were mapped to derived coding sequences, and found to vary between developmental instars and geographic origin of the biological material. This expanded sialome database from T. infestans should be of assistance in future proteomic work attempting to identify salivary proteins that might be used as epidemiological markers of vector exposure, or proteins of pharmacological interest.
Departamento de Parasitología Facultad de Farmacia Universidad de Valencia Valencia Spain
Escola Nacional de Saúde Pública Fiocruz Rio de Janeiro Brazil
Zoology Parasitology Group Ruhr University Bochum Bochum Germany
Zobrazit více v PubMed
Schmunis GA, Yadon ZE (2010) Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 115: 14–21. PubMed
Moncayo A, Silveira AC (2009) Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy. Mem Inst Oswaldo Cruz 104 Suppl 1: 17–30. PubMed
Schofield CJ, Galvao C (2009) Classification, evolution, and species groups within the Triatominae. Acta Trop 110: 88–100. PubMed
Bargues MD, Klisiowicz DR, Panzera F, Noireau F, Marcilla A, et al. (2006) Origin and phylogeography of the Chagas disease main vector Triatoma infestans based on nuclear rDNA sequences and genome size. Infect Genet Evol 6: 46–62. PubMed
Ribeiro JMC, Arca B (2009) From sialomes to the sialoverse: An insight into the salivary potion of blood feeding insects. Adv Insect Physiol 37: 59–118.
Assumpcao TC, Francischetti IM, Andersen JF, Schwarz A, Santana JM, et al. (2008) An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. Insect Biochem Mol Biol 38: 213–232. PubMed PMC
Arca B, Struchiner CJ, Pham VM, Sferra G, Lombardo F, et al. (2014) Positive selection drives accelerated evolution of mosquito salivary genes associated with blood-feeding. Insect Mol Biol 23: 122–131. PubMed PMC
Souza AP, Andrade BB, Aquino D, Entringer P, Miranda JC, et al. (2010) Using recombinant proteins from Lutzomyia longipalpis saliva to estimate human vector exposure in visceral Leishmaniasis endemic areas. PLoS Negl Trop Dis 4: e649. PubMed PMC
Schwartz BS, Ribeiro JM, Goldstein MD (1990) Anti-tick antibodies: an epidemiologic tool in Lyme disease research. Am J Epidemiol 132: 58–66. PubMed
Sagna AB, Gaayeb L, Sarr JB, Senghor S, Poinsignon A, et al. (2013) Plasmodium falciparum infection during dry season: IgG responses to Anopheles gambiae salivary gSG6-P1 peptide as sensitive biomarker for malaria risk in Northern Senegal. Malar J 12: 301. PubMed PMC
Doucoure S, Mouchet F, Cornelie S, DeHecq JS, Rutee AH, et al. (2012) Evaluation of the human IgG antibody response to Aedes albopictus saliva as a new specific biomarker of exposure to vector bites. PLoS Negl Trop Dis 6: e1487. PubMed PMC
Rizzo C, Ronca R, Fiorentino G, Mangano VD, Sirima SB, et al. (2011) Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa. Malar J 10: 206. PubMed PMC
Rizzo C, Ronca R, Fiorentino G, Verra F, Mangano V, et al. (2011) Humoral response to the Anopheles gambiae salivary protein gSG6: a serological indicator of exposure to Afrotropical malaria vectors. PLoS ONE 6: e17980. PubMed PMC
Poinsignon A, Cornelie S, Mestres-Simon M, Lanfrancotti A, Rossignol M, et al. (2008) Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites. PLoS ONE 3: e2472. PubMed PMC
Schwarz A, Medrano-Mercado N, Billingsley PF, Schaub GA, Sternberg JM (2010) IgM-antibody responses of chickens to salivary antigens of Triatoma infestans as early biomarkers for low-level infestation of triatomines. Int J Parasitol 40: 1295–1302. PubMed
Schwarz A, Sternberg JM, Johnston V, Medrano-Mercado N, Anderson JM, et al. (2009) Antibody responses of domestic animals to salivary antigens of Triatoma infestans as biomarkers for low-level infestation of triatomines. Int J Parasitol 39: 1021–1029. PubMed PMC
Schwarz A, Helling S, Collin N, Teixeira CR, Medrano-Mercado N, et al. (2009) Immunogenic salivary proteins of Triatoma infestans: development of a recombinant antigen for the detection of low-level infestation of triatomines. PLoS Negl Trop Dis 3: e532. PubMed PMC
Rohousova I, Volfova V, Nova S, Volf P (2012) Individual variability of salivary gland proteins in three Phlebotomus species. Acta Trop 122: 80–86. PubMed
Barbosa SE, Diotaiuti L, Soares RP, Pereira MH (1999) Differences in saliva composition among three Brazilian populations of Panstrongylus megistus (Hemiptera, Reduviidae). Acta Trop 72: 91–98. PubMed
Barbosa SE, Diotaiuti L, Braga EM, Pereira MH (2004) Variability of the salivary proteins of 20 Brazilian populations of Panstrongylus megistus (Hemiptera: Reduviidae: Triatominae). Acta Trop 92: 25–33. PubMed
Volf P, Tesarova P, Nohynkova EN (2000) Salivary proteins and glycoproteins in phlebotomine sandflies of various species, sex and age. Med Vet Entomol 14: 251–256. PubMed
Guarneri AA, Diotaiuti L, Gontijo NF, Gontijo AF, Pereira MH (2003) Blood-feeding performance of nymphs and adults of Triatoma brasiliensis on human hosts. Acta Trop 87: 361–370. PubMed
Dornakova V, Salazar-Sanchez R, Borrini-Mayori K, Carrion-Navarro O, Levy MZ, et al. (2014) Characterization of guinea pig antibody responses to salivary proteins of Triatoma infestans for the development of a triatomine exposure marker. PLoS Negl Trop Dis 8: e2783. PubMed PMC
Bargues MD, Marcilla A, Ramsey JM, Dujardin JP, Schofield CJ, et al. (2000) Nuclear rDNA-based molecular clock of the evolution of Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mem Inst Oswaldo Cruz 95: 567–573. PubMed
Bargues MD, Marcilla A, Dujardin JP, Mas-Coma S (2002) Triatomine vectors of Trypanosoma cruzi: a molecular perspective based on nuclear ribosomal DNA markers. Trans R Soc Trop Med Hyg 96 Suppl 1: S159–164. PubMed
Marcilla A, Bargues MD, Ramsey JM, Magallon-Gastelum E, Salazar-Schettino PM, et al. (2001) The ITS-2 of the nuclear rDNA as a molecular marker for populations, species, and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mol Phylogenet Evol 18: 136–142. PubMed
Bargues MD, Mas-Coma S (1997) Phylogenetic analysis of Lymnaeid snails based on 18S rDNA sequences. Mol Biol Evol 14: 569–577. PubMed
Bargues MD, Zuriaga MA, Mas-Coma S (2014) Nuclear rDNA pseudogenes in Chagas disease vectors: evolutionary implications of a new 5.8S+ITS-2 paralogous sequence marker in triatomines of North, Central and northern South America. Infect Genet Evol 21: 134–156. PubMed
Bargues MD, Klisiowicz DR, Gonzalez-Candelas F, Ramsey JM, Monroy C, et al. (2008) Phylogeography and genetic variation of Triatoma dimidiata, the main Chagas disease vector in Central America, and its position within the genus Triatoma . PLoS Negl Trop Dis 2: e233. PubMed PMC
Mas-Coma S, Bargues MD (2009) Populations, hybrids and the systematic concepts of species and subspecies in Chagas disease triatomine vectors inferred from nuclear ribosomal and mitochondrial DNA. Acta Trop 110: 112–136. PubMed
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. PubMed
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729. PubMed PMC
Swoffod DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). 4 ed. Sunderland, MA: Sinauer Associates, Inc. pp. Computer program distributed by the Smithsonian Institution.
Piccinali RV, Marcet PL, Ceballos LA, Kitron U, Gurtler RE, et al. (2011) Genetic variability, phylogenetic relationships and gene flow in Triatoma infestans dark morphs from the Argentinean Chaco. Infect Genet Evol 11: 895–903. PubMed PMC
Waleckx E, Salas R, Huaman N, Buitrago R, Bosseno MF, et al. (2011) New insights on the Chagas disease main vector Triatoma infestans (Reduviidae, Triatominae) brought by the genetic analysis of Bolivian sylvatic populations. Infect Genet Evol 11: 1045–1057. PubMed
Martinez FH, Villalobos GC, Cevallos AM, Torre Pde L, Laclette JP, et al. (2006) Taxonomic study of the Phyllosoma complex and other triatomine (Insecta: Hemiptera: Reduviidae) species of epidemiological importance in the transmission of Chagas disease: using ITS-2 and mtCytB sequences. Mol Phylogenet Evol 41: 279–287. PubMed
Chagas AC, Calvo E, Rios-Velasquez CM, Pessoa FA, Medeiros JF, et al. (2013) A deep insight into the sialotranscriptome of the mosquito, Psorophora albipes . BMC Genomics 14: 875. PubMed PMC
Ribeiro JM, Chagas AC, Pham VM, Lounibos LP, Calvo E (2013) An insight into the sialome of the frog biting fly, Corethrella appendiculata . Insect Biochem Mol Biol doi:10.1016/j.ibmb.2013.10.006 PubMed DOI PMC
Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, et al. (2009) De novo transcriptome assembly with ABySS. Bioinformatics 25: 2872–2877. PubMed
Karim S, Singh P, Ribeiro JM (2011) A deep insight into the sialotranscriptome of the Gulf Coast tick, Amblyomma maculatum . PLoS ONE 6: e28525. PubMed PMC
Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9: 411–412 author reply 414. PubMed
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882. PubMed PMC
Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589–595. PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. PubMed PMC
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, et al... (2014) gplots: Various R programming tools for plotting data. R package version 2141.
Team RC (2013) R: A language and environment for statistical computing.: R Foundation for Statistical Computing, Vienna, Austria.
Czibener C, La Torre JL, Muscio OA, Ugalde RA, Scodeller EA (2000) Nucleotide sequence analysis of Triatoma virus shows that it is a member of a novel group of insect RNA viruses. J Gen Virol 81: 1149–1154. PubMed
Ribeiro JMC, Assumpcao TCF, Francischetti IMB (2012) An insight into the sialomes of bloodsucking Heteroptera. Psyche 2012: 16 pages.
Amino R, Tanaka AS, Schenkman S (2001) Triapsin, an unusual activatable serine protease from the saliva of the hematophagous vector of Chagas' disease Triatoma infestans (Hemiptera: Reduviidae). Insect Biochem Mol Biol 31: 465–472. PubMed
Meiser CK, Piechura H, Meyer HE, Warscheid B, Schaub GA, et al. (2010) A salivary serine protease of the haematophagous reduviid Panstrongylus megistus: sequence characterization, expression pattern and characterization of proteolytic activity. Insect Mol Biol 19: 409–421. PubMed
Assumpcao TC, Eaton DP, Pham VM, Francischetti IM, Aoki V, et al. (2012) An insight into the sialotranscriptome of Triatoma matogrossensis, a kissing bug associated with fogo selvagem in South America. Am J Trop Med Hyg 86: 1005–1014. PubMed PMC
Faudry E, Lozzi SP, Santana JM, D'Souza-Ault M, Kieffer S, et al. (2004) Triatoma infestans apyrases belong to the 5′-nucleotidase family. J Biol Chem 279: 19607–19613. PubMed
Andersen JF, Gudderra NP, Francischetti IM, Ribeiro JM (2005) The role of salivary lipocalins in blood feeding by Rhodnius prolixus . Arch Insect Biochem Physiol 58: 97–105. PubMed PMC
Fuentes-Prior P, Noeske-Jungblut C, Donner P, Schleuning WD, Huber R, et al. (1997) Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug. Proc Natl Acad Sci U S A 94: 11845–11850. PubMed PMC
Noeske-Jungblut C, Haendler B, P D, Alagon A, Possani L, et al. (1995) Triabin, a highly potent exosite inhibitor of thrombin. J Biol Chem 270: 28629–28634. PubMed
Assumpcao TC, Alvarenga PH, Ribeiro JM, Andersen JF, Francischetti IM (2010) Dipetalodipin, a novel multifunctional salivary lipocalin that inhibits platelet aggregation, vasoconstriction and angiogenesis through unique binding specificity: TXA2, PGF2alpha, and 15(S)-HETE. J Biol Chem 285: 39001–12. PubMed PMC
Noeske-Jungblut C, Krätzschmar J, Haendler B, Alagon A, Possani L, et al. (1994) An inhibitor of collagen-induced platelet aggregation from the saliva of Triatoma pallidipennis . J Biol Chem 269: 5050–5053. PubMed
Paddock CD, McKerrow JH, Hansell E, Foreman KW, Hsieh I, et al. (2001) Identification, cloning, and recombinant expression of procalin, a major triatomine allergen. J Immunol 167: 2694–2699. PubMed
Assumpcao TC, Ma D, Schwarz A, Reiter K, Santana JM, et al. (2013) Salivary Antigen-5/CAP family members are Cu2+-dependent antioxidant enzymes that scavenge O2 − and inhibit collagen-induced platelet aggregation and neutrophil oxidative burst. J Biol Chem 288: 14341–14361. PubMed PMC
Charles JP (2010) The regulation of expression of insect cuticle protein genes. Insect Biochem Mol Biol 40: 205–213. PubMed
Sappington TW, Raikhel AS (1998) Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem Mol Biol 28: 277–300. PubMed
Siwicki KK, Kravitz EA (2009) Fruitless, doublesex and the genetics of social behavior in Drosophila melanogaster . Curr Opin Neurobiol 19: 200–206. PubMed PMC
Couillault C, Pujol N, Reboul J, Sabatier L, Guichou JF, et al. (2004) TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 5: 488–494. PubMed
Ribeiro JM, Andersen J, Silva-Neto MA, Pham VM, Garfield MK, et al. (2004) Exploring the sialome of the blood-sucking bug Rhodnius prolixus . Insect Biochem Mol Biol 34: 61–79. PubMed
Moreira MF, Coelho HS, Zingali RB, Oliveira PL, Masuda H (2003) Changes in salivary nitrophorin profile during the life cycle of the blood-sucking bug Rhodnius prolixus . Insect Biochem Mol Biol 33: 23–28. PubMed
Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13: 343–357. PubMed PMC
Kiefer JC (2007) Epigenetics in development. Dev Dyn 236: 1144–1156. PubMed
Ebert A, Lein S, Schotta G, Reuter G (2006) Histone modification and the control of heterochromatic gene silencing in Drosophila . Chromosome Res 14: 377–392. PubMed