A simple and efficient genetic transformation method of Ganoderma weberianum
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
- MeSH
- Agrobacterium tumefaciens genetika metabolismus MeSH
- Ganoderma genetika MeSH
- genetické techniky * MeSH
- genetické vektory genetika metabolismus MeSH
- transformace genetická * MeSH
- zelené fluorescenční proteiny MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- enhanced green fluorescent protein MeSH Prohlížeč
- zelené fluorescenční proteiny MeSH
In this study, the Agrobacterium tumefaciens-mediated transformation method for Ganderma weberianum has been established. Driven by the cauliflower mosaic virus (CaMV) 35S promoter, the hygromycin phosphotransferase (hpt), β-glucuronidase (uidA), and enhanced green fluorescent protein (egfp) genes have been efficiently expressed in transgenic mycelia and spores. The transformation system was composed of the growing mycelia, A. tumefaciens strain GV3101, and the expression vector pBI-H1, harboring the CaMV 35S promoter and selective hpt marker. The genetic transformation of G. weberianum was achieved through co-cultivation of Agrobacterium lawn and fungal mycelia at 28 °C on yeast extract agar (YEA) medium. Stable genetic transformants were obtained through successive hygromycin B selections and single spore isolation. Over 80 % of transformants showed genetic stability even after ten rounds of subculturing. The simple and efficient genetic transformation method is a useful tool for molecular genetics analyses and gene manipulation of G. weberianum.
Zobrazit více v PubMed
Biotechnol Adv. 2013 Dec;31(8):1562-74 PubMed
Curr Genet. 2005 Jul;48(1):1-17 PubMed
Acta Pharmacol Sin. 2004 Jun;25(6):833-8 PubMed
Plant Cell Physiol. 1993 Mar;34(2):345-55 PubMed
Bioresour Technol. 2008 Nov;99(17):8524-7 PubMed
Nat Commun. 2012 Jun 26;3:913 PubMed
Mol Biotechnol. 2002 Mar;20(3):239-44 PubMed
Nat Biotechnol. 1998 Sep;16(9):839-42 PubMed
EMBO J. 1995 Jul 3;14(13):3206-14 PubMed
Microbiol Res. 2011 May 20;166(4):314-22 PubMed
Folia Microbiol (Praha). 2004;49(2):112-6 PubMed
BMC Biotechnol. 2010 Sep 14;10 :67 PubMed
World J Microbiol Biotechnol. 2012 Jan;28(1):283-91 PubMed
Mycol Res. 2009 Mar;113(Pt 3):290-7 PubMed
Plant Biotechnol J. 2007 Mar;5(2):221-9 PubMed
Peptides. 2006 Jan;27(1):27-30 PubMed
Biosci Biotechnol Biochem. 2010;74(11):2327-9 PubMed
FEMS Microbiol Lett. 2004 Apr 15;233(2):201-4 PubMed
Biotechnol Appl Biochem. 2006 Mar;43(Pt 3):181-6 PubMed
J Microbiol Methods. 2013 Nov;95(2):251-2 PubMed