Stomatal ozone flux and visible leaf injury in native juvenile trees of Fagus sylvatica L.: a field study from the Jizerske hory Mts., the Czech Republic
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- buk (rod) fyziologie MeSH
- ekosystém MeSH
- látky znečišťující vzduch analýza toxicita MeSH
- listy rostlin chemie MeSH
- monitorování životního prostředí * MeSH
- ozon analýza toxicita MeSH
- průduchy rostlin fyziologie MeSH
- stromy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- látky znečišťující vzduch MeSH
- ozon MeSH
The study was carried out at six sites in the Jizerskehory Mts. in the north of the Czech Republic. At all these sites, ranging in altitude between 460 and 962 m a. s. l., and during the period from June to September in 2008, O3 concentrations and environmental parameters important for accumulated stomatal O3 flux (AFst) into Fagus sylvatica leaves were measured. At five sites, visible injury on Fagus sylvatica L. juvenile tree leaves was observed. A combination of actual O3 levels in the Jizerkehory Mts. and environmental conditions, though relative air humidity and air temperature significantly limited stomatal conductance, has been sufficient enough to cause O3 uptake exceeding the critical level (CL) for forest ecosystems. The AFst values ranged between 13.4 and 22.3 mmol O3 m(-2). The CL for the accumulated stomatal flux of O3 above a flux threshold 1.6 nmol m(-2) s(-1) (AFst1.6) was exceeded at all sites from ca 45 to 270% (160% on average). The CL of 5 ppm h(-1) for AOT40 (accumulated O3 exposure above threshold of 40 ppb) was exceeded at four sites. The relationship between visible injury on O3 indices was found. The conclusions based on AOT40 and AFSt are not the same. AFSt has been determined as better predictor of visible injury than AOT40.
Zobrazit více v PubMed
Environ Pollut. 2009 Jul;157(7):2091-107 PubMed
Environ Pollut. 2007 Feb;145(3):636-43 PubMed
Environ Pollut. 1997;98(1):51-60 PubMed
Environ Sci Pollut Res Int. 2004;11(3):171-80 PubMed
Tree Physiol. 1995 Mar;15(3):159-65 PubMed
Environ Pollut. 2000 Sep;109(3):403-13 PubMed
Environ Pollut. 2002;116(1):3-25 PubMed
Environ Pollut. 2003;126(3):375-9 PubMed
Environ Pollut. 2007 Apr;146(3):608-16 PubMed
Environ Int. 2003 Jun;29(2-3):385-92 PubMed
Environ Pollut. 2000 Sep;109(3):361-72 PubMed
Science. 1985 Nov 1;230(4725):566-70 PubMed
Environ Pollut. 1997;97(1-2):91-106 PubMed
Environ Pollut. 2008 Jan;151(1):79-92 PubMed
Tree Physiol. 1987 Mar;3(1):63-91 PubMed
Environ Pollut. 2007 Jun;147(3):454-66 PubMed
Environ Pollut. 2007 Apr;146(3):587-607 PubMed
Environ Pollut. 2005 Mar;134(1):1-4 PubMed
Environ Pollut. 2000 Sep;109(3):431-42 PubMed
Environ Pollut. 2005 Oct;137(3):494-506 PubMed
Environ Pollut. 2003;124(2):307-20 PubMed
Environ Pollut. 2007 Feb;145(3):629-35 PubMed
Environ Pollut. 2013 Feb;173:85-96 PubMed
Environ Monit Assess. 2011 Dec;183(1-4):501-15 PubMed
Environ Pollut. 2007 Feb;145(3):644-51 PubMed
Environ Pollut. 2004 Jul;130(1):5-16 PubMed
Environ Pollut. 2011 Feb;159(2):351-62 PubMed
Environ Pollut. 2011 May;159(5):1024-34 PubMed
Philos Trans R Soc Lond B Biol Sci. 2015 Apr 19;370(1666):null PubMed
Environ Pollut. 2009 May;157(5):1497-505 PubMed
Environ Pollut. 2004 Jul;130(1):99-112 PubMed
Environ Sci Pollut Res Int. 2014 Feb;21(4):2628-41 PubMed
Environ Sci Pollut Res Int. 2001;8(4):231-42 PubMed
Environ Pollut. 2004 Jul;130(1):33-9 PubMed
Tree Physiol. 1995 Apr;15(4):253-8 PubMed