Collagen matrix as a tool in studying fibroblastic cell behavior
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
25734486
PubMed Central
PMC4594574
DOI
10.1080/19336918.2015.1005469
Knihovny.cz E-resources
- Keywords
- 3-dimensional; TGFβ-1, AP-1, activator protein 1; ECM, c-Jun N-terminal kinase; MFB, cell culture, cell proliferation, collagen, extracellular matrix, extracellular matrix; ERK, extracellular signal-regulated kinase; FAK, fibroblasts, fibronectin, focal adhesion kinase; GT, granulation tissue; HSC, hepatic stellate cells; JNK, integrins, megakaryoblastic leukemia 1; MMP, metalloproteinases, metalloproteinases; NF-κB, myofibroblasts, myofibroblasts; MKL1, nuclear factor kappa B; PI3K/Akt, phosphatidylinositide 3-kinase/Ak strain transforming; PEG, polyethylene glycol; α-SMA, substrate stiffness, tissue inhibitor of metalloproteinases; TNF-α, transforming growth factor β 1; TIMP, tumor necrosis factor α, α-smooth muscle actin; 3D,
- MeSH
- Extracellular Matrix metabolism MeSH
- Fibroblasts cytology metabolism MeSH
- Collagen metabolism MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Collagen MeSH
Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes.
See more in PubMed
Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 2006; 7:211-24; PMID:16496023; http://dx.doi.org/10.1038/nrm1858 PubMed DOI
Grinnell F, Petroll WM. Cell motility and mechanics in three-dimensional collagen matrices. Annu Rev Cell Dev Biol 2010; 26:335-61; PMID:19575667; http://dx.doi.org/10.1146/annurev.cellbio.042308.113318 PubMed DOI
Plant AL, Bhadriraju K, Spurlin TA, Elliott JT. Cell response to matrix mechanics: focus on collagen. Biochim Biophys Acta 2009; 1793:893-902; PMID:19027042; http://dx.doi.org/10.1016/j.bbamcr.2008.10.012 PubMed DOI
Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001; 294:1708-12; PMID:11721053; http://dx.doi.org/10.1126/science.1064829 PubMed DOI
Katsumi A, Orr AW, Tzima E, Schwartz MA. Integrins in mechanotransduction. J Biol Chem 2004; 279:12001-4; PMID:14960578; http://dx.doi.org/10.1074/jbc.R300038200 PubMed DOI
Pedersen JA, Swartz MA. Mechanobiology in the third dimension. Ann Biomed Eng 2005; 33:1469-90; PMID:16341917; http://dx.doi.org/10.1007/s10439-005-8159-4 PubMed DOI
Laurens N, Koolwijk P, De Maat MPM. Fibrin structure and wound healing. J Thromb Haemostas 2006; 4:932-9; http://dx.doi.org/10.1111/j.1538-7836.2006.01861.x PubMed DOI
Clark RAF. Fibrin and wound healing. Ann NY Acad Sci 2001; 936:355-67; PMID:11460492; http://dx.doi.org/10.1111/j.1749-6632.2001.tb03522.x PubMed DOI
McClain SA, Simon M, Jones E, Nandi A, Gailit JO, Tonnesen MG, Newman D, Clark RAF. Mesenchymal cell activation is the rate-limiting step of granulation tissue induction. Am J Pathol 1996; 149:1257-70; PMID:8863674 PubMed PMC
Meran S, Steadman R. Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol 2011; 92:158-67; PMID:21355940; http://dx.doi.org/10.1111/j.1365-2613.2011.00764.x PubMed DOI PMC
Kraman R, DiRocco DP, Humphreys BD. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease. J Pathol 2013; 231:273-89; PMID:24006178 PubMed
Bienkowski RS, Gotkin MG. Control of collagen deposition in mammalian lung. Proc Soc Exp Biol Med 1995; 209:118-40; PMID:7770462; http://dx.doi.org/10.3181/00379727-209-43886a PubMed DOI
Lorena D, Uchio K, Costa AMA, Desmouliere A. Normal scarring: importance of myofibroblasts. Wound Rep Regen 2002; 10:86-92; http://dx.doi.org/10.1046/j.1524-475X.2002.00201.x PubMed DOI
Dvorak HF. Tumors: wounds that do not heal. New England J Med 1986; 315:1650-9; http://dx.doi.org/10.1056/NEJM198612253152606 PubMed DOI
Tripathi M, Billet S, Bhowmick NA. Understanding the role of stromal fibroblasts in cancer progression. Cell Adhes Migr 2012; 6:231-5; http://dx.doi.org/10.4161/cam.20419 PubMed DOI PMC
Wolf K, Alexander S, Schacht V, Coussens LM, von Adrian UH, van Rheenen J, Deryugina E, Friedl P. Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol 2009; 20:931-41; PMID:19682592; http://dx.doi.org/10.1016/j.semcdb.2009.08.005 PubMed DOI PMC
Han Y-P, Zhou L, Wang J, Xiong S, Garner WL, French SW, Tsukamoto H. Essential role of matrix metalloproteinases in interleukin-1-induced myofibroblastic activation of hepatic stellate cell in collagen. J Biol Chem 2004; 279:4820-8; PMID:14617627; http://dx.doi.org/10.1074/jbc.M310999200 PubMed DOI PMC
Jiroutová A, Peterová E, Bittnerová L, Slavkovský R, Čevelová P, Řezáčová M, Cerman J, Mičuda S, Kanta J. Collagenolytic potential of rat liver myofibroblasts. Physiol Res 2013; 62:15-25 PubMed
Elsdale T, Bard J. Collagen substrata for studies on cell behavior. J Cell Biol 1972; 54:626-37; PMID:4339818; http://dx.doi.org/10.1083/jcb.54.3.626 PubMed DOI PMC
Bell E, Ivarsson B, Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 1979; 76:1274-8; PMID:286310; http://dx.doi.org/10.1073/pnas.76.3.1274 PubMed DOI PMC
Hu XW, Knight DP, Chapman JA. The effect of non-polar liquids and non-ionic detergents on the ultrastructure and assembly of rat tail tendon collagen fibrils in vitro. Biochim Biophys Acta 1997; 1334:327-37; PMID:9101729; http://dx.doi.org/10.1016/S0304-4165(96)00112-2 PubMed DOI
Artym VV, Matsumoto K. Imaging cells in three-dimensional collagen matrix. Curr Protoc Cell Biol 2010; Suppl 48:10.18.1-10.18.20; PMID:20853341 PubMed PMC
Haas VR, Santos AR, Jr, Wada MLF. Behaviour of fibroblastic cells cultured in collagen I using the sandwich technique. Cytobios 2001; 106 Suppl 2:255-67; PMID:11545452 PubMed
Ishikawa O, Kondo A, Okada K, Miyachi Y, Furumura M. Morphological and biochemical analyses on fibroblasts and self-produced collagens in a novel three-dimensional culture. Br J Dermatol 1997; 136:6-11; PMID:9039287; http://dx.doi.org/10.1111/j.1365-2133.1997.tb08738.x PubMed DOI
Hazeki N, Yamato M, Imamura Y, Sasaki T, Nakazato K, Yamamoto K, Konomi H, Hayashi T. Analysis of matrix protein components of the dermis-like structure formed in a long-term culture of human fibroblasts: type VI collagen is a major component. J Biochem 1998; 123:587-95; PMID:9538247; http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021977 PubMed DOI
Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 1994; 124:401-4; PMID:8106541; http://dx.doi.org/10.1083/jcb.124.4.401 PubMed DOI PMC
Rhee S, Grinnell F. Fibroblast mechanics in 3D collagen matrices. Adv Drug Deliv Rev 2007; 59:1299-305; PMID:17825456; http://dx.doi.org/10.1016/j.addr.2007.08.006 PubMed DOI PMC
Carlson MA, Longaker MT. The fibroblast-populated collagen matrix as a model of wound healing: a review of the evidence. Wound Repair Regen 2004; 12:134-47; PMID:15086764; http://dx.doi.org/10.1111/j.1067-1927.2004.012208.x PubMed DOI
Erwanto Y, Kawahara S, Katayama K, Takenoyama S, Fujino H, Yamauchi K, Morishita T, Kai Y, Watanabe S, Muguruma M. Microbial transglutaminase modifies gel properties of porcine collagen. Asian-Aust J Anim Sci 2003; 16:269-76; http://dx.doi.org/10.5713/ajas.2003.269 DOI
Stachel I, Schwarzenbolz U, Henle T, Meyer M. Cross-linking of type I collagen with microbial transglutaminase: identification of cross-linking sites. Biomacromolecules 2010; 11:698-705; PMID:20131754; http://dx.doi.org/10.1021/bm901284x PubMed DOI
Chau DYS, Collighan RJ, Verderio EAM, Addy VL, Griffin M. The cellular response to transglutaminase-cross-linked collagen. Biomaterials 2005; 26:6518-29; PMID:15927250; http://dx.doi.org/10.1016/j.biomaterials.2005.04.017 PubMed DOI
Sheu M-T, Huang J-C, Yeh G-C, Ho H-O. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials 2001; 22:1713-9; PMID:11396874; http://dx.doi.org/10.1016/S0142-9612(00)00315-X PubMed DOI
Hinz B. Tissue stiffness, latent TGF-β1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep 2009; 11:120-6; PMID:19296884; http://dx.doi.org/10.1007/s11926-009-0017-1 PubMed DOI
Erikson A, Nortvedt HN, Naess SN, Sikorski P, Davies C de L. Physical and chemical modifications of collagen gels: impact on diffusion. Biopolymers 2008; 89:135-43; PMID:17957715; http://dx.doi.org/10.1002/bip.20874 PubMed DOI
Brown RA, Wiseman M, Chuo C-B, Cheema U, Nazhat SN. Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 2005; 15:1762-70; http://dx.doi.org/10.1002/adfm.200500042 DOI
Besseau L, Coulomb B, Lebreton-Decoster C, Giraud-Guille M-M. Production of ordered collagen matrices for three-dimensional cell culture. Biomaterials 2002; 23:27-36; PMID:11762846; http://dx.doi.org/10.1016/S0142-9612(01)00075-8 PubMed DOI
Helary C, Foucault-Bertaud A, Godeau G, Coulomb B, Giraud Guille MM. Fibroblast populated dense collagen matrices: cell migration, cell density and metalloproteinases expression. Biomaterials 2005; 26:1533-43; PMID:15522755; http://dx.doi.org/10.1016/j.biomaterials.2004.05.016 PubMed DOI
Benningo KA, Dembo M, Wang Y-L. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. PNAS 2004; 101:18024-9; PMID:15601776; http://dx.doi.org/10.1073/pnas.0405747102 PubMed DOI PMC
Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskel 2005; 60:24-34; http://dx.doi.org/10.1002/cm.20041 PubMed DOI
Jones C, Ehrlich HP. Fibroblast expression of α-smooth muscle actin, α2β1 integrin and αvβ3 integrin: influence of surface rigidity. Exp Mol Pathol 2011; 91:394-9; PMID:21530503; http://dx.doi.org/10.1016/j.yexmp.2011.04.007 PubMed DOI PMC
Grover GN, Rao N, Christman KL. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering. Nanotechnology 2014; 25:014011; PMID:24334615; http://dx.doi.org/10.1088/0957-4484/25/1/014011 PubMed DOI PMC
Dodd NJF, Schor SL, Rushton G. The effects of a collagenous extracellular matrix on fibroblast membrane organization. Exp Cell Res 1982; 141:421-31; PMID:6291961; http://dx.doi.org/10.1016/0014-4827(82)90230-0 PubMed DOI
Tomasek JJ, Hay ED. Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels. J Cell Biol 1984; 99:536-49; PMID:6146628; http://dx.doi.org/10.1083/jcb.99.2.536 PubMed DOI PMC
da Rocha-Azevedo B, Grinnell F. Fibroblast morphogenesis on 3D collagen matrices: the balance between cell clustering and cell migration. Exp Cell Res 2013; 319:2440-6; PMID:23664837; http://dx.doi.org/10.1016/j.yexcr.2013.05.003 PubMed DOI PMC
Mercier I, Lechaire J-P, Desmouliere A, Gaill F, Aumailley M. Interactions of human skin fibroblasts with monomeric or fibrillar collagens induce different organization of the cytoskeleton. Exp Cell Res 1996; 225:245-56; PMID:8660912; http://dx.doi.org/10.1006/excr.1996.0174 PubMed DOI
Jiang H, Grinnell F. Cell-matrix entanglement and mechanical anchorage of fibroblasts in three-dimensional collagen matrices. Mol Biol Cell 2005; 16:5070-6; PMID:16107563; http://dx.doi.org/10.1091/mbc.E05-01-0007 PubMed DOI PMC
Harris AK, Stopak D, Wild P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 1981; 290:249-51; PMID:7207616; http://dx.doi.org/10.1038/290249a0 PubMed DOI
Guidry C, Grinnell F. Contraction of hydrated collagen gels by fibroblasts: evidence for two mechanisms by which collagen fibrils are stabilized. Collagen Rel Res 1986; 6:515-29; http://dx.doi.org/10.1016/S0174-173X(87)80050-X PubMed DOI
Freyman TM, Yannas IV, Yokoo R, Gibson LJ. Fibroblast contractile force is independent of the stiffness which resists the contraction. Exp Cell Res 2002; 272:153-62; PMID:11777340; http://dx.doi.org/10.1006/excr.2001.5408 PubMed DOI
Eastwood M, Porter R, Khan U, McGrouther G, Brown R. Quantitative analysis of collagen gel contractile forces generated by dermal fibroblasts and the relationship to cell morphology. J Cell Physiol 1996; 166:33-42; PMID:8557773; http://dx.doi.org/10.1002/(SICI)1097-4652(199601)166:1%3c33::AID-JCP4%3e3.0.CO;2-H PubMed DOI
Grinnell F. Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol 2000; 10:362-5; PMID:10932093; http://dx.doi.org/10.1016/S0962-8924(00)01802-X PubMed DOI
Kessler D, Dethlefsen S, Haase I, Plomann M, Hirche F, Krieg T, Eckes B. Fibroblasts in mechanically stressed collagen lattices assume a „synthetic“ phenotype. J Biol Chem 2001; 276:36575-85; PMID:11468280; http://dx.doi.org/10.1074/jbc.M101602200 PubMed DOI
Ehrlich HP, Allison GM, Leggett M. The myofibroblast, cadherin, α smooth muscle actin and the collagen effect. Cell Biochem Funct 2006; 24:63-70; PMID:15584087; http://dx.doi.org/10.1002/cbf.1188 PubMed DOI
Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B. Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J Cell Biol 2006; 172:259-68; PMID:16401722; http://dx.doi.org/10.1083/jcb.200506179 PubMed DOI PMC
Huang X, Yang N, Fiore VF, Barker TH, Sun Y, Morris SW, Ding Q, Thannickal VJ, Zhou Y. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol 2012; 47:340-8; PMID:22461426; http://dx.doi.org/10.1165/rcmb.2012-0050OC PubMed DOI PMC
Hinz B, Gabbiani G. Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling. Thromb Haemost 2003; 90:993-1002; PMID:14652629 PubMed
Kopp J, Preis E, Said H, Hafemann B, Wickert L, Gressner AM, Pallua N, Dooley S. Abrogation of transforming growth factor-β signaling by SMAD7 inhibits collagen gel contraction of human dermal fibroblasts. J Biol Chem 2005; 280:21570-6; PMID:15788410; http://dx.doi.org/10.1074/jbc.M502071200 PubMed DOI
Liu XD, Umino T, Ertl R, Veays T, Skold CM, Takigawa K, Romberger DJ, Spurzem JR, Zhu YK, Kohyama T, et al. . Persistence of TGF-β1 induction of increased fibroblast contractility. In Vitro Cell Dev Biol-Anim 2001; 37:193-201; PMID:11370814; http://dx.doi.org/10.1290/1071-2690(2001)037%3c0193:POTIOI%3e2.0.CO;2 PubMed DOI
Meyer-ter-Vehn T, Han H, Grehn F, Schlunck G. Extracellular matrix elasticity modulates TGF-β-induced p38 activation and myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci 2011; 52:9149-55; PMID:22058331; http://dx.doi.org/10.1167/iovs.10-6679 PubMed DOI
Li Z, Dranoff JA, Chan EP, Uemura M, Sévigny F, Wells RG. Transforming growth factor-β and substrate stiffness regulate portal fibroblast activation in culture. Hepatology 2007; 46:1246-56; PMID:17625791; http://dx.doi.org/10.1002/hep.21792 PubMed DOI
Kelly JJ, Forge A, Jagger DJ. Contractility in Type III cochlear fibrocytes is dependent on non-muscle myosin II and intercellular gap junctional coupling. JARO 2012; 13:473-84; PMID:22476723; http://dx.doi.org/10.1007/s10162-012-0322-7 PubMed DOI PMC
Fujimura T, Hotta M, Kitahara T, Takema Y. Loss of contraction force in dermal fibroblasts with aging due to decreases in myosin light chain phosphorylation enzymes. Arch Pharm Res 2011; 34:1015-22; PMID:21725823; http://dx.doi.org/10.1007/s12272-011-0619-9 PubMed DOI
Helary C, Zarka M, Giraud-Guille MM. Fibroblasts within concentrated collagen hydrogels favour chronic skin wound healing. J Tissue Eng Regen Med 2012; 6:225-37; PMID:22362469; http://dx.doi.org/10.1002/term.420 PubMed DOI
Hadjipanayi E, Mudera V, Brown RA. Guiding cell migration in 3D: a collagen matrix with graded directional stiffness. Cell Motil Cytoskeleton 2009; 66:121-8; PMID:19170223; http://dx.doi.org/10.1002/cm.20331 PubMed DOI
Agha R, Ogawa R, Pietramaggiori G, Orgill DP. A review of the role of mechanical forces in cutaneous wound healing. J Surg Res 2011; 171:700-8; PMID:22005503; http://dx.doi.org/10.1016/j.jss.2011.07.007 PubMed DOI
Prajapati RT, Eastwood M, Brown RA. Duration and orientation of mechanical loads determine fibroblast cyto-mechanical activation: monitored by protease release. Wound Repair Regen 2000; 8:238-46; PMID:10886814; http://dx.doi.org/10.1046/j.1524-475x.2000.00238.x PubMed DOI
Petersen A, Joly P, Bergman C, Korus G, Duda GN. The impact of substrate stiffness and mechanical loading on fibroblast-induced scaffold remodeling. Tissue Eng Part A 2012; 18:1804-17; PMID:22519582; http://dx.doi.org/10.1089/ten.tea.2011.0514 PubMed DOI
Kim S-H, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 2011; 209:139-51; PMID:21307119; http://dx.doi.org/10.1530/JOE-10-0377 PubMed DOI
White DJ, Puranen S, Johnson MS, Heino J. The collagen receptor subfamily of the integrins. Int J Biochem Cell Biol 2004; 36:1405-10; PMID:15147720; http://dx.doi.org/10.1016/j.biocel.2003.08.016 PubMed DOI
DeMali KA, Wennerberg K, Burridge K. Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol 2003; 15:572-82; PMID:14519392; http://dx.doi.org/10.1016/S0955-0674(03)00109-1 PubMed DOI
Assoian RK, Klein EA. Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol 2008; 18:347-52; PMID:18514521; http://dx.doi.org/10.1016/j.tcb.2008.05.002 PubMed DOI PMC
Márquez J, Olaso E. Role of discoidin domain receptor 2 in wound healing. Histol Histopathol 2014; 29:1355-64. PubMed
Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev 2012; 31:295-321; PMID:22366781; http://dx.doi.org/10.1007/s10555-012-9346-z PubMed DOI PMC
Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, Tschumperlin DJ. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppresion. J Cell Biol 2010; 190:693-706; PMID:20733059; http://dx.doi.org/10.1083/jcb.201004082 PubMed DOI PMC
Nakagawa S, Pawelek P, Grinnell F. Long-term culture of fibroblasts in contracted collagen gels: effects on cell growth and biosynthetic activity. J Invest Dermatol 1989; 93:792-8; PMID:2584746; http://dx.doi.org/10.1111/1523-1747.ep12284425 PubMed DOI
Lambert CA, Soudant EP, Nusgens BV, Lapiere CM. Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces. Lab Invest 1992; 66:444-51; PMID:1316527 PubMed
Hadjipanayi E, Mudera V, Brown RA. Close dependence of fibroblast proliferation on collagen scaffold matrix stiffness. J Tissue Eng Regen Med 2009; 3:77-84; PMID:19051218; http://dx.doi.org/10.1002/term.136 PubMed DOI
Rosenfeldt H, Grinnell F. Fibroblast quiescence and the disruption of ERK signaling in mechanically unloaded collagen matrices. J Biol Chem 2000; 275:3088-92; PMID:10652290; http://dx.doi.org/10.1074/jbc.275.5.3088 PubMed DOI
Fringer J, Grinnell F. Fibroblast quiescence in floating or released collagen matrices. Contribution of the ERK signaling pathway and actin cytoskeletal organization. J Biol Chem 2001; 276:31047-52; PMID:11410588; http://dx.doi.org/10.1074/jbc.M101898200 PubMed DOI
Carlson MA, Smith LM, Cordes CM, Chao J, Eudy JD. Attachment-regulated signaling networks in the fibroblast-populated 3D collagen matrix. Sci Rep 2013; 3:1880; PMID:23697962; http://dx.doi.org/10.1038/srep01880 PubMed DOI PMC
Ivarsson M, McWhirter A, Borg TK, Rubin K. Type I collagen synthesis in cultured human fibroblasts: regulation by cell spreading, platelet-derived growth factor and interactions with collagen fibers. Matrix Biol 1998; 16:409-25; PMID:9524361; http://dx.doi.org/10.1016/S0945-053X(98)90014-2 PubMed DOI
Le J, Rattner A, Chepda T, Frey J, Chamson A. Production of matrix metalloproteinase 2 in fibroblast reaction to mechanical stress in a collagen gel. Arch Dermatol Res 2002; 294:405-10; PMID:12522578 PubMed
Trächslin J, Koch M, Chiquet M. Rapid and reversible regulation of collagen XII expression by changes in tensile stress. Exp Cell Res 1999; 247:320-8; http://dx.doi.org/10.1006/excr.1998.4363 PubMed DOI
Eckes B, Mauch C, Hüppe G, Krieg T. Downregulation of collagen synthesis in fibroblasts within three-dimensional collagen lattices involves transcriptional and posttranscriptional mechanisms. FEBS Lett 1993; 318:129-33; PMID:8440370; http://dx.doi.org/10.1016/0014-5793(93)80006-G PubMed DOI
Gillery P, Leperre A, Coustry F, Maquart F-X, Borel J-P. Different regulation of collagen I transcription in three-dimensional lattice cultures. FEBS Lett 1992; 296:297-9; PMID:1537408; http://dx.doi.org/10.1016/0014-5793(92)80308-4 PubMed DOI
Arora PD, McCulloch CAG. Dependence of collagen remodelling on α-smooth muscle actin expression by fibroblasts. J Cell Physiol 1994; 159:161-75; PMID:8138584; http://dx.doi.org/10.1002/jcp.1041590120 PubMed DOI
Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 2001; 12:2730-41; PMID:11553712; http://dx.doi.org/10.1091/mbc.12.9.2730 PubMed DOI PMC
Grinnell F, Ho C-H, Tamariz E, Lee DJ, Skuta G. Dendritic fibroblasts in three-dimensional collagen matrices. Mol Biol Cell 2003; 14:384-95; PMID:12589041; http://dx.doi.org/10.1091/mbc.E02-08-0493 PubMed DOI PMC
Rhee S, Jiang H, Ho C-H, Grinnell F. Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactions. PNAS 2007; 104:5425-30; PMID:17369366; http://dx.doi.org/10.1073/pnas.0608030104 PubMed DOI PMC
Zhu YK, Umino T, Liu XD, Wang HJ, Romberger DJ, Spurzem JR, Rennard SI. Contraction of fibroblast-containing collagen gels: initial collagen concentration regulates the degree of contraction and cell survival. In Vitro Cell Dev Biol-Anim 2001; 37:10-16; PMID:11249200; http://dx.doi.org/10.1290/1071-2690(2001)037%3c0010:COFCCG%3e2.0.CO;2 PubMed DOI
Grinnell F, Zhu M, Carlson MA, Abrams JM. Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp Cell Res 1999; 248:608-19; PMID:10222153; http://dx.doi.org/10.1006/excr.1999.4440 PubMed DOI
Fluck J, Querfeld C, Cremer A, Niland S, Krieg T, Sollberg S. Normal human primary fibroblasts undergo apoptosis in three-dimensional contractile collagen gels. J Invest Dermatol 1998; 110:153-7; PMID:9457911; http://dx.doi.org/10.1046/j.1523-1747.1998.00095.x PubMed DOI
Fringer J, Grinnell F. Fibroblast quiescence in floating collagen matrices. Decrease in serum activation of MEK and Raf but not Ras. J Biol Chem 2003; 278:20612-7; PMID:12663662; http://dx.doi.org/10.1074/jbc.M212365200 PubMed DOI
Gillery P, Georges N, Wegrowski J, Randoux A, Borel J-P. Protein synthesis in collagen lattice-cultured fibroblast is controlled at the ribosomal level. FEBS Lett 1995; 357:287-9; PMID:7835429; http://dx.doi.org/10.1016/0014-5793(94)01375-B PubMed DOI
Varedi M, Tredget EE, Ghahary A, Scott PG. Stress-relaxation and contraction of a collagen matrix induces expression of TGF-β and triggers apoptosis in dermal fibroblasts. Biochem Cell Biol 2000; 78:427-36; PMID:11012081; http://dx.doi.org/10.1139/o00-014 PubMed DOI
Rosenfeldt H, Lee DJ, Grinnell F. Increased c-fos mRNA expression by human fibroblasts contracting stressed collagen matrices. Mol Cell Biol 1998; 18:2659-67. PubMed PMC
Schiro JA, Chan BMC, Roswit WT, Kassner PD, Pentland AP, Hemler ME, Eisen AZ, Kupper TS. Integrin α2β1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell 1991; 67:403-10; PMID:1913826; http://dx.doi.org/10.1016/0092-8674(91)90191-Z PubMed DOI
Cooke ME, Sakai T, Mosher DF. Contraction of collagen matrices mediated by α2β1A and αvβ3 integrins. J Cell Sci 2000; 113:2375-83; PMID:10852817 PubMed
Niland S, Cremer A, Fluck J, Eble JA, Krieg T, Sollberg S. Contraction-dependent apoptosis of normal dermal fibroblasts. J Invest Dermatol 2001; 116:686-92; PMID:11348456; http://dx.doi.org/10.1046/j.1523-1747.2001.01342.x PubMed DOI
Carracedo S, Lu N, Popova SN, Jonsson R, Eckes B, Gullberg D. The fibroblast integrin α11β1 is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. J Biol Chem 2010; 285:10434-45; PMID:20129924; http://dx.doi.org/10.1074/jbc.M109.078766 PubMed DOI PMC
Racine-Samson L, Rockey DC, Bissell DM. The role of α1β1 integrin in wound contraction. A quantitative analysis of liver myofibroblasts in vivo and in primary culture. J Biol Chem 1997; 272:30911-7; PMID:9388237; http://dx.doi.org/10.1074/jbc.272.49.30911 PubMed DOI
Xu J, Zutter MM, Santoro SA, Clark RAF. A three-dimensional collagen lattice activates NF-κB in human fibroblasts: role of integrin α2 gene expression and tissue remodeling. J Cell Biol 1998; 140:709-19; PMID:9456329; http://dx.doi.org/10.1083/jcb.140.3.709 PubMed DOI PMC
Langholz O, Röckel D, Mauch C, Kozlowska E, Bank I, Krieg T, Eckes B. Collagen and collagenase expression in three-dimensional collagen lattices are differentially regulated by α1β1 and α2β1 integrins. J Cell Biol 1995; 131:1903-15; PMID:8557756; http://dx.doi.org/10.1083/jcb.131.6.1903 PubMed DOI PMC
Berendsen AD, Bronckers ALJJ, Smit TH, Wallboomers XF, Everts V. Collagen type V enhances matrix contraction by human periodontal ligament fibroblasts seeded in three-dimensional collagen gels. Matrix Biol 2006; 25:515-22; PMID:16973341; http://dx.doi.org/10.1016/j.matbio.2006.07.006 PubMed DOI
Gardner H, Broberg A, Pozzi A, Laato M, Heino J. Absence of integrin α1β1 in the mouse causes loss of feedback regulation of collagen synthesis in normal and wounded dermis. J Cell Sci 1999; 112:263-72; PMID:9885280 PubMed
Tian B, Lessan K, Kahm J, Kleidon J, Henke C. β1 integrin regulates fibroblast viability during collagen matrix contraction through a phosphatidylinositol 3-kinase/Akt/protein kinase B signaling pathway. J Biol Chem 2002; 277:24667-75; PMID:11986332; http://dx.doi.org/10.1074/jbc.M203565200 PubMed DOI
Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 2000; 14:2123-33; PMID:10970876; http://dx.doi.org/10.1101/gad.815400 PubMed DOI
Emonard H, Christiane Y, Munaut C, Foidart JM. Reconstituted basement membrane matrix stimulates interstitial procollagenase synthesis by human fibroblasts in culture. Matrix 1990; 10:373-7; PMID:1964716; http://dx.doi.org/10.1016/S0934-8832(11)80144-7 PubMed DOI
Lambert CA, Colidge AC, Munaut C, Lapiere CM, Nusgens BV. Distinct pathways in the over-expression of matrix metalloproteinases in human fibroblasts by relaxation of mechanical tension. Matrix Biol 2001; 20:397-408; PMID:11691580; http://dx.doi.org/10.1016/S0945-053X(01)00156-1 PubMed DOI
Karamichos D, Brown RA, Mudera V. Collagen stiffness regulates cellular contraction and matrix remodeling gene expression. J Biomed Mater Res 2007; 83A:887-94; http://dx.doi.org/10.1002/jbm.a.31423 PubMed DOI
Théret N, Lehti K, Musso O, Clément B. MMP2 activation by collagen I and concanavalin A in cultured human hepatic stellate cells. Hepatology 1999; 30:462-8; http://dx.doi.org/10.1002/hep.510300236 PubMed DOI
Wang D-R, Sato M, Li L-N, Miura M, Kojima N, Sanoo H. Stimulation of pro-MMP-2 production and activation by native form of extracellular type I collagen in cultured hepatic stellate cells. Cell Struct Funct 2003; 28:505-13; PMID:15004420; http://dx.doi.org/10.1247/csf.28.505 PubMed DOI
Préaux A-M, Mallat A, Van Nhieu JT, D’Ortho M-P, Hembry RM, Mavier P. Matrix metalloproteinase-2 activation in human hepatic fibrosis regulation by cell-matrix interactions. Hepatology 1999; 30:944-50; http://dx.doi.org/10.1002/hep.510300432 PubMed DOI
Von den Hoff JW. Effects of mechanical tension on matrix degradation by human periodontal ligament cells cultured in collagen gels. J Periodont Res 2003; 38:449-57; PMID:12941067; http://dx.doi.org/10.1034/j.1600-0765.2003.00404.x PubMed DOI
Li Y-L, Sato M, Kojima N, Miura M, Senoo H. Regulatory role of extracellular matrix components in expression of matrix metalloproteinases in cultured hepatic stellate cells. Cell Struct Funct 1999; 24:255-61; PMID:15216880; http://dx.doi.org/10.1247/csf.24.255 PubMed DOI
Phillips JA, Bonassar LJ. Matrix metalloproteinase activity synergizes with α2β1 integrins to enhance collagen remodeling. Exp Cell Res 2005; 310:79-87; PMID:16098964; http://dx.doi.org/10.1016/j.yexcr.2005.03.039 PubMed DOI
Scott KA, Wood EJ, Karran EH. A matrix metallopoteinase inhibitor which prevents fibroblast-mediated collagen lattice contraction. FEBS Lett 1998; 441:137-40; PMID:9877181; http://dx.doi.org/10.1016/S0014-5793(98)01542-7 PubMed DOI
Daniels JT, Cambrey AD, Occleston NL, Garrett Q, Tarnuzzer RW, Schultz GS, Khaw PT. Matrix metalloproteinase inhibition modulates fibroblast-mediated matrix contraction and collagen production in vitro. Invest Ophthalmol Vis Sci 2003; 44:1104-10; PMID:12601036; http://dx.doi.org/10.1167/iovs.02-0412 PubMed DOI
Pins GD, Collins-Pavao ME, Van De Water L, Yarmush ML, Morgan JR. Plasmin triggers rapid contraction and degradation of fibroblast-populated collagen lattices. J Invest Dermatol 2000; 114:647-53; PMID:10733668; http://dx.doi.org/10.1046/j.1523-1747.2000.00858.x PubMed DOI
Bott K, Upton Z, Schrobback K, Ehrbat M, Hubbell JA, Lutolf MP, Rizzi SC. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 2010; 31:8454-64; PMID:20684983; http://dx.doi.org/10.1016/j.biomaterials.2010.07.046 PubMed DOI
Znoyko I, Trojanowska M, Reuben A. Collagen binding α2β1 and α1β1 integrins play contrasting roles in regulation of Ets-1 expression in human liver myofibroblasts. Mol Cell Biochem 2006; 282:89-99; PMID:16317516; http://dx.doi.org/10.1007/s11010-006-1400-0 PubMed DOI
Barczyk MM, Lu N, Popova SN, Bolstad AI, Gullberg D. α11β1 integrin-mediated MMP-13-dependent collagen lattice contraction by fibroblasts: evidence for integrin-coordinated collagen proteolysis. J Cell Physiol 2013; 228:1108-19; PMID:23065814; http://dx.doi.org/10.1002/jcp.24261 PubMed DOI
Ravanti L, Heino J, López-Otín C, Kähäri V-M. Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase. J Biol Chem 1999; 274:2446-55; PMID:9891015; http://dx.doi.org/10.1074/jbc.274.4.2446 PubMed DOI
Xu J, Clark RAF. A three-dimensional collagen lattice induces protein kinase C-ξ activity: role in α2 integrin and collagenase mRNA expression. J Cell Biol 1997; 136:473-83; PMID:9015316; http://dx.doi.org/10.1083/jcb.136.2.473 PubMed DOI PMC
Takahara T, Zhang LP, Yata Y, Xue F, Minemura M, Sato H, Watanabe A. Modulation of matrix metalloproteinase-9 in hepatic stellate cells by three-dimensional type I collagen: its activation and signaling pathway. Hepatol Res 2003; 26:318-26; PMID:12963432; http://dx.doi.org/10.1016/S1386-6346(03)00169-4 PubMed DOI
Takahara T, Smart DE, Oakley F, Mann DA. Induction of myofibroblast MMP-9 transcription in three-dimensional collagen I cultures: regulation by NF-κB, AP-1 and Sp1. Int J Biochem Cell Biol 2004; 36:353-63; PMID:14643899; http://dx.doi.org/10.1016/S1357-2725(03)00260-7 PubMed DOI
Gillery P, Maquart F-X, Borel J-P. Fibronectin dependence of the contraction of collagen lattices by human skin fibroblasts. Exp Cell Res 1986; 167:29-37; PMID:3758208; http://dx.doi.org/10.1016/0014-4827(86)90201-6 PubMed DOI
Taliana L, Evans MDM, Dimitrijevich SD, Steele JG. Vitronectin or fibronectin is required for corneal fibroblast-seeded collagen gel contraction. Invest Ophthalmol Vis Sci 2000; 41:103-9; PMID:10634608 PubMed
Hocking DC, Sottile J, Langenbach KJ. Stimulation of integrin-mediated cell contractility by fibronectin polymerization. J Biol Chem 2000; 275:10673-82; PMID:10744764; http://dx.doi.org/10.1074/jbc.275.14.10673 PubMed DOI
Halliday NL, Tomasek JJ. Mechanical properties of the extracellular matrix influence fibronectin fibril assembly. Exp Cell Res 1995; 217:109-17; PMID:7867709; http://dx.doi.org/10.1006/excr.1995.1069 PubMed DOI
Doillon CJ, Silver FH, Berg RA. Fibroblast growth on a porous collagen sponge containing hyaluronic acid and fibronectin. Biomaterials 1987; 8:195-200; PMID:3607152; http://dx.doi.org/10.1016/0142-9612(87)90063-9 PubMed DOI
Nakamura Y, Sagara T, Seki K, Hirano S, Nishida T. Permissive effect of fibronectin on collagen gel contraction mediated by bovine trabecular meshwork cells. Invest Ophthalmol Vis Sci 2003; 44:4331-6; PMID:14507877; http://dx.doi.org/10.1167/iovs.03-0068 PubMed DOI
Liu Y, Yanai R, Lu Y, Kimura K, Nishida T. Promotion by fibronection of collagen gel contraction mediated by human corneal fibroblasts. Exp Eye Res 2006; 83:1196-204; PMID:16914141; http://dx.doi.org/10.1016/j.exer.2006.06.008 PubMed DOI
da Rocha-Azevedo B, Ho C-H, Grinnell F. Fibroblast cluster formation on 3D collagen matrices requires cell contraction dependent fibronectin matrix organization. Exp Cell Res 2013; 319:546-55; PMID:23117111; http://dx.doi.org/10.1016/j.yexcr.2012.10.005 PubMed DOI PMC
Sethi KK, Yannis IV, Mudera V, Eastwood M, McFarland C, Brown RA. Evidence for sequential utilization of fibronectin, vitronectin, and collagen during fibroblast-mediated collagen contraction. Wound Repair Regen 2002; 10:397-408; PMID:12453144; http://dx.doi.org/10.1046/j.1524-475X.2002.10609.x PubMed DOI
Asaga H, Kikuchi S, Yoshizato K. Collagen gel contraction by fibroblasts requires cellular fibronectin but not plasma fibronectin. Exp Cell Res 1991; 167-74; PMID:1995291; http://dx.doi.org/10.1016/0014-4827(91)90552-6 PubMed DOI
Yoshizato K, Tsukahara M, Oki T, Hayashi M, Morpho MOY. The interaction of cellular fibronectin with collagen during fibroblast-mediated contraction of collagen gels. J Invest Dermatol Symp Proc 1999; 4:190-5; http://dx.doi.org/10.1038/sj.jidsp.5640207 PubMed DOI
Mochitate K, Pawelek P, Grinnell F. Stress relaxation of contracted collagen gels: disruption of actin filament bundles, release of cell surface fibronectin, and down-regulation of DNA and protein synthesis. Exp Cell Res 1991; 193:198-207; PMID:1995294; http://dx.doi.org/10.1016/0014-4827(91)90556-A PubMed DOI
Sevilla CA, Dalecki D, Hocking DC. Extracellular matrix fibronectin stimulates the self-assembly of microtissues on native collagen gels. Tissue Eng Part A 2010; 16:3805-19; PMID:20673131; http://dx.doi.org/10.1089/ten.tea.2010.0316 PubMed DOI PMC