ClpP-independent function of ClpX interferes with telithromycin resistance conferred by Msr(A) in Staphylococcus aureus
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25801573
PubMed Central
PMC4432155
DOI
10.1128/aac.04367-14
PII: AAC.04367-14
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacterial Proteins genetics metabolism MeSH
- Ketolides pharmacology MeSH
- Macrolides pharmacology MeSH
- Mutation MeSH
- Staphylococcus aureus drug effects metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Bacterial Proteins MeSH
- Ketolides MeSH
- Macrolides MeSH
- telithromycin MeSH Browser
The ABCF family protein Msr(A) confers high resistance to macrolides but only low resistance to ketolides in staphylococci. Mutations in conserved functional regions of ClpX as well as deletion of clpX significantly increased Msr(A)-mediated resistance to the ketolide antibiotic telithromycin. ClpX is the chaperone component of the ClpXP two-component proteolytic system. Nevertheless, no changes in resistance were observed in a clpP knockout strain expressing msr(A), demonstrating that ClpX affects Msr(A) independently of ClpP.
See more in PubMed
Adriaenssens N, Coenen S, Versporten A, Muller A, Minalu G, Faes C, Vankerckhoven V, Aerts M, Hens N, Molenberghs G, Goossens H, ESAC Project Group . 2011. European Surveillance of Antimicrobial Consumption (ESAC): outpatient antibiotic use in Europe (1997–2009). J Antimicrob Chemother 66(Suppl 6):vi3–vi12. doi:10.1093/jac/dkr453. PubMed DOI
Zmantar T, Kouidhi B, Miladi H, Bakhrouf A. 27 October 2011, posting date. Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC Res Notes doi:10.1186/1756-0500-4-453. PubMed DOI PMC
Gatermann SG, Koschinski T, Friedrich S. 2007. Distribution and expression of macrolide resistance genes in coagulase-negative staphylococci. Clin Microbiol Infect 13:777–781. doi:10.1111/j.1469-0691.2007.01749.x. PubMed DOI
Novotná G, Spízek J, Janata J. 2007. In vitro activity of telithromycin and quinupristin/dalfopristin against methicillin-resistant coagulase-negative staphylococci with defined resistance genotypes. Folia Microbiol (Praha) 52:593–599. doi:10.1007/BF02932188. PubMed DOI
Reynolds ED, Cove JH. 2005. Resistance to telithromycin is conferred by msr(A), msrC and msr(D) in Staphylococcus aureus. J Antimicrob Chemother 56:1179–1180. doi:10.1093/jac/dki378. PubMed DOI
Urbaskova P. 1998. Resistance of bacteria to antibiotics. Selected methods [Rezistence bakterií k antibiotikům. Vybrané metody] TRIOS, Praha.
Novotna G, Janata J. 2006. A new evolutionary variant of the streptogramin A resistance protein, Vga(A)LC, from Staphylococcus haemolyticus with shifted substrate specificity towards lincosamides. Antimicrob Agents Chemother 50:4070–4076. doi:10.1128/AAC.00799-06. PubMed DOI PMC
Nair D, Memmi G, Hernandez D, Bard J, Beaume M, Gill S, Francois P, Cheung AL. 2011. Whole-genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J Bacteriol 193:2332–2335. doi:10.1128/JB.00027-11. PubMed DOI PMC
Glynn SE, Martin A, Nager AR, Baker TA, Sauer RT. 2009. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139:744–756. doi:10.1016/j.cell.2009.09.034. PubMed DOI PMC
Stinson BM, Nager AR, Glynn SE, Schmitz KR, Baker TA, Sauer RT. 2013. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell 153:628–639. doi:10.1016/j.cell.2013.03.029. PubMed DOI PMC
Martin A, Baker TA, Sauer RT. 2008. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat Struct Mol Biol 15:1147–1151. doi:10.1038/nsmb.1503. PubMed DOI PMC
Donaldson LW, Wojtyra U, Houry WA. 2003. Solution structure of the dimeric zinc binding domain of the chaperone ClpX. J Biol Chem 278:48991–48996. doi:10.1074/jbc.M307826200. PubMed DOI
Thibault G, Yudin J, Wong P, Tsitrin V, Sprangers R, Zhao R, Houry WA. 2006. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX. Proc Natl Acad Sci U S A 103:17724–17729. doi:10.1073/pnas.0601505103. PubMed DOI PMC
Baker TA, Sauer RT. 27 June 2011, posting date. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta doi:10.1016/j.bbamcr.2011.06.007. PubMed DOI PMC
Wojtyra UA, Thibault G, Tuite A, Houry WA. 2003. The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. J Biol Chem 278:48981–48990. doi:10.1074/jbc.M307825200. PubMed DOI
Cohen S, Sweeney HM. 1970. Transduction of methicillin resistance in Staphylococcus aureus dependent on an unusual specificity of the recipient strain. J Bacteriol 104:1158–1167. PubMed PMC
Feng J, Michalik S, Varming AN, Andersen JH, Albrecht D, Jelsbak L, Krieger S, Ohlsen K, Hecker M, Gerth U, Ingmer H, Frees D. 2013. Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus. J Proteome Res 12:547–558. doi:10.1021/pr300394r. PubMed DOI
Haeusser DP, Lee AH, Weart RB, Levin PA. 2009. ClpX inhibits FtsZ assembly in a manner that does not require its ATP hydrolysis-dependent chaperone activity. J Bacteriol 191:1986–1991. doi:10.1128/JB.01606-07. PubMed DOI PMC
Burton BM, Williams TL, Baker TA. 2001. ClpX-mediated remodeling of mu transpososomes: selective unfolding of subunits destabilizes the entire complex. Mol Cell 8:449–454. doi:10.1016/S1097-2765(01)00307-0. PubMed DOI
Kerr ID, Reynolds ED, Cove JH. 2005. ABC proteins and antibiotic drug resistance: is it all about transport? Biochem Soc Trans 33:1000–1002. doi:10.1042/BST20051000. PubMed DOI
Frees D, Qazi SNA, Hill PJ, Ingmer H. 2003. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol 48:1565–1578. doi:10.1046/j.1365-2958.2003.03524.x. PubMed DOI
Frees D, Chastanet A, Qazi S, Sørensen K, Hill P, Msadek T, Ingmer H. 2004. Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol 54:1445–1462. doi:10.1111/j.1365-2958.2004.04368.x. PubMed DOI
Farrand AJ, Reniere ML, Ingmer H, Frees D, Skaar EP. 2013. Regulation of host hemoglobin binding by the Staphylococcus aureus Clp proteolytic system. J Bacteriol 195:5041–5050. doi:10.1128/JB.00505-13. PubMed DOI PMC