Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus hominis strains isolated from clinical specimens
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26253583
PubMed Central
PMC4752575
DOI
10.1007/s12223-015-0419-6
PII: 10.1007/s12223-015-0419-6
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální proteiny genetika metabolismus MeSH
- lidé MeSH
- linkosamidy farmakologie MeSH
- makrolidy farmakologie MeSH
- methyltransferasy genetika metabolismus MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence MeSH
- stafylokokové infekce mikrobiologie MeSH
- Staphylococcus hominis klasifikace účinky léků enzymologie genetika MeSH
- streptograminy farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- ErmA protein, Bacteria MeSH Prohlížeč
- linkosamidy MeSH
- makrolidy MeSH
- methyltransferasy MeSH
- streptograminy MeSH
Coagulase-negative staphylococci (CoNS) are the most frequently isolated bacteria from the blood and the predominant cause of nosocomial infections. Macrolides, lincosamides and streptogramin B (MLSB) antibiotics, especially erythromycin and clindamycin, are important therapeutic agents in the treatment of methicillin-resistant staphylococci infections. Among CoNS, Staphylococcus hominis represents the third most common organism. In spite of its clinical significance, very little is known about its mechanisms of resistance to antibiotics, especially MLSB. Fifty-five S. hominis isolates from the blood and the surgical wounds of hospitalized patients were studied. The erm(C) gene was predominant in erythromycin-resistant S. hominis isolates. The methylase genes, erm(A) and erm(B), were present in 15 and 25% of clinical isolates, respectively. A combination of various erythromycin resistance methylase (erm) genes was detected in 15% S. hominis isolates. The efflux gene msr(A) was detected in 18% of isolates, alone in four isolates, and in different combinations in a further six. The lnu(A) gene, responsible for enzymatic inactivation of lincosamides was carried by 31% of the isolates. No erythromycin resistance that could not be attributed to the genes erm(A), erm(B), erm(C) and msr(A) was detected. In S. hominis, 75 and 84%, respectively, were erythromycin resistant and clindamycin susceptible. Among erythromycin-resistant S. hominis isolates, 68% of these strains showed the inducible MLSB phenotype. Four isolates harbouring the msr(A) genes alone displayed the MSB phenotype. These studies indicated that resistance to MLSB in S. hominis is mostly based on the ribosomal target modification mechanism mediated by erm genes, mainly the erm(C), and enzymatic drug inactivation mediated by lnu(A).
Zobrazit více v PubMed
Aktas Z, Aridogan A, Kayacan CB, Aydin D. Resistance to macrolide, lincosamide and streptogramin antibiotics in staphylococci isolated in Istanbul, Turkey. J Microbiol. 2007;45:286–290. PubMed
Bouchami O, Achour W, Ben Hassen A. Prevalence and mechanisms of macrolide resistance among Staphylococcus epidermidis isolates from neutropenic patients in Tunisia. Clin Microbiol Infect. 2007;13:103–106. doi: 10.1111/j.1469-0691.2006.01567.x. PubMed DOI
Bouchami O, Ben Hassen A, de Lencastre H, Miragaia M. Molecular epidemiology of methicillin-resistant Staphylococcus hominis (MRSHo): low clonality and reservoirs of SCCmec structural elements. PLoS One. 2011;6:e21940. doi: 10.1371/journal.pone.0021940. PubMed DOI PMC
Casey AL, Lambert PA, Elliott TSJ. Staphylococci. Int J Antimicrob Agents. 2007;29(Suppl 3):S23–S32. doi: 10.1016/S0924-8579(07)72175-1. PubMed DOI
Chaves F, García-Álvarez M, Sanz F, Alba C, Otero JR. Nosocomial spread of a Staphylococcus hominis subsp. novobiosepticus strain causing sepsis in a neonatal intensive care unit. J Clin Microbiol. 2005;43:4877–4879. doi: 10.1128/JCM.43.9.4877-4879.2005. PubMed DOI PMC
Chokr A, Watier D, Eleaume H, Pangon B, Ghnassia JC, Mack D, Jabbouri S. Correlation between biofilm formation and production of polysaccharide intercellular adhesin in clinical isolates of coagulase-negative staphylococci. Int J Med Microbiol. 2006;296:381–388. doi: 10.1016/j.ijmm.2006.02.018. PubMed DOI
d’Azevedo PA, Trancesi R, Sales T, Monteiro J, Gales AC. Outbreak of Staphylococcus hominis subsp. novobiosepticus bloodstream infections in São Paulo city, Brazil. J Med Microbiol. 2008;57:256–257. doi: 10.1099/jmm.0.47345-0. PubMed DOI
Fredheim EGA, Klingenberg C, Rodhe H, Frankenberger S, Gaustad P, Fllaegstad T, Sollid E. Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol. 2009;47:1172–1180. doi: 10.1128/JCM.01891-08. PubMed DOI PMC
Gatermann SG, Koschinski T, Friedrich S. Distribution and expression of macrolide resistance genes in coagulase-negative staphylococci. Clin Microbiol Infect. 2007;13:777–781. doi: 10.1111/j.1469-0691.2007.01749.x. PubMed DOI
Geha DJ, Uhl JR, Gustaferro CA, Persing DH. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. J Clin Microbiol. 1994;32:1768–1772. PubMed PMC
Gherardi G, De Florio L, Lorino G, Fico L, Dicuonzo G. Macrolide resistance genotypes and phenotypes among erythromycin-resistant clinical isolates of Staphylococcus aureus and coagulase-negative staphylococci, Italy. FEMS Immunol Med Microbiol. 2009;55:62–67. doi: 10.1111/j.1574-695X.2008.00499.x. PubMed DOI
Götz F, Bannerman T, Schleifer K.L (2006) The genera Staphylococcus and Macrococcus. In: Dworkin M, Falkow S, Rosenberig E, Schleiferr K-H, Stackebrands E (ed) The Prokaryotes, 3rd edn. A Handbook on the biology of bacteria: Firmicutes, Cyanobacteria 4: pp 5–75
Hira V, Sluijter M, Estevão S, Horst-Kreft D, Ott A, de Groot R, Hermans PW, Kornelisse RF. Clinical and molecular epidemiologic characteristics of coagulase-negative staphylococcal bloodstream infections in intensive care neonates. Pediatr Infect Dis J. 2007;26:607–612. doi: 10.1097/INF.0b013e318060cc03. PubMed DOI
Kaufman D, Fairchild D. Clinical microbiology of bacterial and fugal sepsis in very-low-birth-weight infants. Clin Microbiol Rev. 2004;17:638–680. doi: 10.1128/CMR.17.3.638-680.2004. PubMed DOI PMC
Kloos WE, Bannerman TL. Staphylococcus and Micrococcus. In: Murray PR, Baron E, Pfallen MA, Tenover FC, Yolken R, editors. Manual of clinical microbiology. Washington, D.C.: ASM Press; 1999. pp. 264–282.
Krediet TG, Mamcini EM, van Rooij E, Vlooswijk J, Paauw A, Gerards LJ, Fleer A. Molecular epidemiology of coagulase-negative staphylococci causing sepsis in a neonatal intensive care unit over an 11-year period. J Clin Microbiol. 2004;42:992–995. doi: 10.1128/JCM.42.3.992-995.2004. PubMed DOI PMC
Le Bouter A, Leclercq R, Cattoir V. Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus saprophyticus clinical isolates. Int J Antimicrob Agents. 2011;37:118–123. doi: 10.1016/j.ijantimicag.2010.10.008. PubMed DOI
Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis. 2002;34:482–492. doi: 10.1086/324626. PubMed DOI
Lim JA, Kwon AR, Kim SK, Chong Y, Lee K, Choi EC. Prevalence of resistance to macrolide, lincosamide and streptogramin antibiotics in Gram-positive cocci isolated in a Korean hospital. J Antimicrob Chemother. 2002;49:489–495. doi: 10.1093/jac/49.3.489. PubMed DOI
Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F, Etienne J. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob Agents Chemother. 1999;43:1062–1066. PubMed PMC
Martineau F, Picard FJ, Lansac N, Ménard C, Roy PH, Ouellette M, Bergeron MG. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 2000;44:231–238. doi: 10.1128/AAC.44.2.231-238.2000. PubMed DOI PMC
Mendoza-Olazarán S, Morfin-Otero R, Rodríguez-Noriega E, Llaca-Díaz J, Flores-Treviño S, González-González GM, Villarreal-Treviño L, Elvira Garza-González E. Microbiological and molecular characterization of Staphylococcus hominis isolates from blood. PLoS One. 2013;8:e61161. doi: 10.1371/journal.pone.0061161. PubMed DOI PMC
Novotna G, Adamkova V, Janata J, Melter O, Spizek J. Prevalence of resistance mechanisms against macrolides and lincosamides in methicillin-resistant coagulase-negative staphylococci in the Czech Republic and occurrence of an undefined mechanism of resistance to lincosamides. Antimicrob Agents Chemother. 2005;49:3586–3589. doi: 10.1128/AAC.49.8.3586-3589.2005. PubMed DOI PMC
Palazzo IC, d’Azevedo PA, Secchi C, Pignatari AC, Darini AL. Staphylococcus hominis subsp. novobiosepticus strains causing nosocomial bloodstream infection in Brazil. J Antimicrob Chemother. 2008;62:1222–1226. doi: 10.1093/jac/dkn375. PubMed DOI
Petinaki E, Spiliopoulou I, Maniati M, Maniatis AN. Emergence of Staphylococcus hominis strains expressing low-level resistance to quinupristin/dalfopristin in Greece. J Antimicrob Chemother. 2005;55:811–812. doi: 10.1093/jac/dki072. PubMed DOI
Piette A, Verschraegen G. Role of coagulase-negative staphylococci in human disease. Vet Microbiol. 2009;134:45–54. doi: 10.1016/j.vetmic.2008.09.009. PubMed DOI
Rodhe H, Mack D, Christner M, Burdelski C, Franke G, Knobloch JK-M. Pathogenesis of staphylococcal device-related infections: from basic science to new diagnostic, therapeutic and prophylactic approaches. Rev Med Microbiol. 2006;17:45–54. doi: 10.1097/01.revmedmi.0000244134.43170.83. DOI
Rodríguez-Aranda A, Daskalaki M, Villar J, Sanz F, Otero JR, Chaves F. Nosocomial spread of linezolid-resistant Staphylococcus haemolyticus infections in an intensive care unit. Diagn Microbiol Infect Dis. 2009;63:398–402. doi: 10.1016/j.diagmicrobio.2008.12.008. PubMed DOI
Roy P, Ahmed NH, Biswal I, Grover RK. Multidrug-resistant Staphylococcus hominis subsp. novobiosepticus causing septicemia in patients with malignancy. Indian J Pathol Microbiol. 2014;57:275–277. doi: 10.4103/0377-4929.134708. PubMed DOI
Ruiz de Gopegui E, Iuliana Marinescu C, Diaz P, Socias A, Garau M. Nosocomial spread of linezolid-resistant Staphylococcus hominis in two hospitals in Majorca. Enferm Infecc Microbiol Clin. 2011;29:339–344. doi: 10.1016/j.eimc.2011.02.001. PubMed DOI
Sorlozano A, Gutierrez J, Martinez T, Yuste ME, Perez-Lopez JA, Vindel A, Guillen J, Boquete T. Detection of new mutations conferring resistance to linezolid in glycopeptide-intermediate susceptibility Staphylococcus hominis subspecies hominis circulating in an intensive care unit. Eur J Clin Microbiol Infect Dis. 2010;29:73–80. doi: 10.1007/s10096-009-0823-4. PubMed DOI
Szczuka E, Trawczyński K, Kaznowski A. Clonal analysis of Staphylococcus hominis strains isolated from hospitalized patients. Pol J Microbiol. 2014;63:349–354. PubMed
Szczuka E, Telega K, Kaznowski A. Biofilm formation by Staphylococcus hominis strains isolated from human clinical specimens. Folia Microbiol. 2015;60:1–5. doi: 10.1007/s12223-014-0332-4. PubMed DOI
Vimberg V, Lenart J, Janata J, Balikova Novotna G. ClpP-independent function of ClpX interferes with telithromycin resistance conferred by msr(A) in Staphylococcus aureus. Antimicrob Agents Chemother. 2015;59(6):3611–3614. doi: 10.1128/AAC.04367-14. PubMed DOI PMC
Won JY, Kim M. Vancomycin-resistant Staphylococcus hominis endophthalmitis following cataract surgery. Clin Ophthalmol. 2013;7:1193–1195. PubMed PMC
Zhang L, Thomas JC, Miragaia M, Bouchami O, Chaves F, d’Azevedo PA, Aanensen DM, de Lencastre H, Gray BM, Robinson DA. Multilocus sequence typing and further genetic characterization of the enigmatic pathogen, Staphylococcus hominis. PLoS One. 2013;8:e66496. doi: 10.1371/journal.pone.0066496. PubMed DOI PMC
Small mammals as sentinels of antimicrobial-resistant staphylococci